Công việc của Data Science là gì?

Data science làm việc như một nhà phân tích, họ sử dụng khả năng và kỹ thuật của mình để phân tích và xử lý dữ liệu. Từ đó, đưa ra những cái nhìn sâu sắc, hiệu quả và khôn ngoan giúp công ty có được những quyết định đúng đắn. Nghiên cứu và phân tích những dữ liệu đã được cấu trúc lại để ra những thông tin giả thuyết và những mô hình hiệu quả. Bên cạnh đó, những vị trí như Data Engineer, Data Analyst cũng thường đảm nhận các công việc tương tự.

Mô tả công việc của vị trí Data Science

Trình bày kết quả và báo cáo

Data Science cần có khả năng trình bày kết quả và báo cáo các phân tích và mô hình hóa một cách rõ ràng và logic. Công việc này bao gồm việc viết báo cáo kỹ thuật, thuyết trình kết quả cho các đồng nghiệp và quản lý, đồng thời có thể phải giải thích các phương pháp và quyết định đã được thực hiện. Kỹ năng viết lách và trình bày là rất quan trọng để intern có thể truyền đạt thông tin một cách hiệu quả và dễ hiểu.

Phát triển các mô hình và thuật toán dữ liệu 

Để áp dụng cho các tập dữ liệu, sử dụng mô hình dự đoán để tăng và tối ưu hóa trải nghiệm của khách hàng, tạo doanh thu, nhắm mục tiêu quảng cáo và các kết quả kinh doanh khác, phát triển khung thử nghiệm A/B của công ty và chất lượng mô hình thử nghiệm, phối hợp với các nhóm chức năng khác nhau để thực hiện các mô hình và giám sát kết quả.

Lọc và xử lý dữ liệu cấu trúc và phi cấu trúc

Những dữ liệu phi cấu trúc là những dữ liệu thô, những dữ liệu bị lỗi mà máy tính không đọc được. Data scientist phải xử lý, làm sạch và tổ chức lại những dữ liệu đó để xây dựng nên một bộ dữ liệu có cấu trúc và có ý nghĩa.

Dự đoán xu hướng

Sử dụng thuật toán Machine learning để dự đoán những xu hướng, cơ hội cũng như dự đoán các sự kiện có thể xảy ra hoặc đưa ra được những vấn đề mà công ty đang gặp phải. Họ còn sử nhiều công cụ khác như SQL, Weka, Python,... để triển khai và thực tiễn hóa từ đó nhận ra những mẫu dư thừa trong dữ liệu.

Bằng cấp Cử nhân
Công việc/Cuộc sống
3.9 ★
Khoảng lương năm 130 - 169 M
Cơ hội nghề nghiệp
4.0 ★
Số năm kinh nghiệm 2 - 4 năm

Data Science có mức lương bao nhiêu?

130 - 169 triệu /năm
Tổng lương
120 - 156 triệu
/năm

Lương cơ bản

+
10 - 13 triệu
/năm

Lương bổ sung

130 - 169 triệu

/năm
130 M
169 M
52 M 390 M
Khoảng lương phổ biến
Khoảng lương
Xem thêm thông tin chi tiết

Lộ trình sự nghiệp Data Science

Tìm hiểu cách trở thành Data Science, bạn cần có những kỹ năng và trình độ học vấn nào để thành công cũng như đạt được mức lương mong đợi ở mỗi bước trên con đường sự nghiệp của bạn.

Intern Data Science
26 - 39 triệu/năm
Data Science
130 - 169 triệu/năm
Data Science

Số năm kinh nghiệm

0 - 1
14%
2 - 4
54%
5 - 7
20%
8+
12%
Không bao gồm số năm dành cho việc học và đào tạo

Điều kiện và Lộ trình trở thành một Data Science?

Yêu cầu tuyển dụng của Data Science

Để thực hiện tốt các nhiệm vụ được giao, Data Science cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan: 

Yêu cầu bằng cấp và kiến thức chuyên môn 

  • Bằng cấp và chuyên ngành: Data Science thường yêu cầu ứng viên có bằng cử nhân hoặc sắp tốt nghiệp trong các ngành liên quan như Khoa học Máy tính, Khoa học Dữ liệu, Thống kê, Toán học hoặc các ngành có liên quan. Bằng cấp này không chỉ cung cấp cho ứng viên kiến thức nền tảng mà còn cho phép họ áp dụng các kiến thức này vào thực tiễn trong các dự án và nghiên cứu khoa học dữ liệu.

  • Kiến thức quản trị cơ sở dữ liệu: Nắm vững một hoặc nhiều hệ quản trị cơ sở dữ liệu (DBMS) phổ biến như MySQL, PostgreSQL, SQL Server, Oracle, MongoDB, hoặc SQLite. Nắm vững ít nhất một ngôn ngữ lập trình phù hợp cho công việc Data Science, chẳng hạn như Python hoặc Java, để tạo ứng dụng kết hợp với cơ sở dữ liệu.

  • Kiến thức công nghệ: Ứng viên cần có kiến thức vững và áp dụng được các ngôn ngữ lập trình (C/C++, Java/Javascript,...), các kiến thức nền tảng về phần mềm, hệ điều hành, cơ sở dữ liệu (database) cơ bản để trở thành nhân viên IT chuyên nghiệp.

Yêu cầu về kỹ năng

  • Có khả năng định lượng dữ liệu: Kết quả làm việc của data scientist chính là đưa ra giả thuyết, dự đoán và khám phá được xu hướng có thể xảy. Vì vậy, việc bạn có kỹ năng định lượng dữ liệu là một kỹ năng tốt giúp bạn nâng cao tay nghề.

  • Kỹ năng phân tích và đánh giá: Mỗi ngôn ngữ lập trình khác nhau sẽ đảm nhiệm từng phần khác nhau khi phát triển một ứng dụng hay phần mềm. Điều này đòi hỏi các Data Science phải có kỹ năng phân tích để nhận biết đâu là ngôn ngữ phù hợp nhất 

  • Kỹ năng về phương pháp thống kê: Đây chính là một trong những kỹ năng đòi hỏi một data scientist cần phải có. Việc biết sử dụng các phương pháp thống kê giúp bạn giải quyết công việc tốt hơn và vững chãi để phát triển hơn. Các môn học như xác suất thống kê, thống kê mô tả,... sẽ cung cấp cho bạn những kiến thức về kỹ năng này.

Yêu cầu khác

  • Kinh nghiệm

Data Science cần có kiến thức và kinh nghiệm về các kỹ thuật thống kê và khai thác dữ liệu: GLM/Regression, Random Forest, Boosting, Trees, text mining, phân tích mạng xã hội, v.v. Phải có tối thiểu 1 năm kinh nghiệm,  thành thạo SQL, Python, C++,... để thực hiện các công việc như nhập liệu, xử lý dữ liệu, xuất và chia sẻ dữ liệu,... Những ngôn ngữ lập trình này tuy khô khan nhưng đó chính là công cụ hỗ trợ đắc lực cho một data scientist.

Lộ trình thăng tiến của Data Science 

Lộ trình thăng tiến của Data Science có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.

1.  Intern Data Science

Mức lương: 4 - 8  triệu/ tháng 

Kinh nghiệm làm việc: Dưới 1 năm 

Intern Data Science là một vị trí thực tập trong lĩnh vực phát triển ứng dụng di động sử dụng framework React Native. Người nắm giữ vị trí này là những người mới bắt đầu hoặc đang trong giai đoạn thực tập để học hỏi và phát triển kỹ năng cần thiết để trở thành một Data Science chuyên nghiệp.

>> Đánh giá: Trong thời đại công nghệ 4.0, dữ liệu trở thành một nguồn tài nguyên vô cùng quý giá. Các tổ chức cần có những người có khả năng thu thập, phân tích dữ liệu để đưa ra những quyết định mang tính khách quan. Đó là lý do vị trí Data science ngày càng được quan tâm. Đây là một tín hiệu tích cực cho các bạn sinh viên, người mới ra trường muốn theo đuổi sự nghiệp Data science.

>> Xem thêm: Việc làm Thực tập sinh Data Science cho người mới

2. Data science

Mức lương: 14 - 33  triệu/ tháng 

Kinh nghiệm làm việc: 1 - 4 năm 

Data science làm việc như một nhà phân tích, họ sử dụng khả năng và kỹ thuật của mình để phân tích và xử lý dữ liệu. Từ đó, đưa ra những cái nhìn sâu sắc, hiệu quả và khôn ngoan giúp công ty có được những quyết định đúng đắn. Nghiên cứu và phân tích những dữ liệu đã được cấu trúc lại để ra những thông tin giả thuyết và những mô hình hiệu quả. 

>> Đánh giá: Data Science được đánh giá là ngành có mức lương hấp dẫn hàng đầu trên thế giới, nhu cầu tuyển dụng cho vị trí trong ngành cũng rất cao. Những người giỏi thường được các công ty săn đón với mức lương cao ngất ngưởng cùng nhiều quyền lợi đi kèm.

>> Xem thêm: Việc làm Data Science dang tuyển dụng

5 bước giúp Data Science thăng tiến nhanh trong trong công việc

Nâng cao kỹ năng và kiến thức

Khoa học Dữ liệu là một lĩnh vực phát triển nhanh chóng, do đó bạn cần thường xuyên cập nhật kiến thức mới nhất về các kỹ thuật, công cụ và phần mềm Khoa học Dữ liệu. Bạn có thể tham gia các khóa học online, hội thảo, workshop, hoặc đọc sách, báo, tài liệu chuyên ngành để cập nhật kiến thức, tập trung phát triển các kỹ năng chuyên môn trong lĩnh vực Data Science mà bạn quan tâm, chẳng hạn như học máy, trí tuệ nhân tạo, xử lý ngôn ngữ tự nhiên, Big Data,..

Tích lũy kinh nghiệm

Hãy tích cực tìm kiếm cơ hội làm việc trong lĩnh vực Data Science. Bạn có thể tham khảo các trang web tuyển dụng uy tín như VietnamWorks, TopCV, Glints,..Hoặc bạn có thể liên hệ trực tiếp với các công ty quan tâm để ứng tuyển, tham gia các dự án thực tế là cách tốt nhất để bạn tích lũy kinh nghiệm và áp dụng kiến thức vào thực tế. 

Có khả năng thu thập, xử lý và phân tích lượng dữ liệu khổng lồ

Khi làm việc với một lượng lớn dữ liệu từ nhiều nguồn khác nhau, đòi hỏi data scientist phải có khả năng thu thập và xử lý chúng để máy tính có thể đọc được. Do vậy, đây chính là tố chất quan trọng để giúp bạn có thể làm việc hiệu quả hơn.

Tư duy như một Data Scientist thực thụ

Khả năng tư duy là yếu tố phân biệt một người giỏi hay bình thường. Đối với một Data Scientist, bạn cần rèn luyện não mỗi ngày bằng cách luôn tò mò về nhiều vấn đề và tự tìm cho mình lời giải đáp từ nhiều góc độ khác nhau. Ngoài ra bạn cũng nên có tính tiểu tiết, ghi chép lại đầy đủ các phát hiện của mình và phải có óc sáng tạo để đưa ra giải pháp mới mẻ, hiệu quả.

Kỹ năng trình bày tốt

30% công việc của một Data Science là phải trao đổi với ban lãnh đạo, các phòng ban liên quan như Marketing, Phát triển sản phẩm,... để hiểu được vấn đề chung. Ngoài ra ở bước cuối cùng của chuỗi công việc, bạn sẽ phải trình bày các kết quả với ban lãnh đạo sao cho trực quan và dễ hiểu nhất. Chính vì thế, kỹ năng thuyết trình tốt là một điểm vô cùng quan trọng và cần được trau dồi thường xuyên.

Đọc thêm:

Việc làm của Data Engineer mới cập nhật

Việc làm Data Analyst đang tuyển dụng

Phỏng vấn Data Science

"Bạn có kinh nghiệm trong việc xử lý và phân tích dữ liệu lớn từ nguồn khác nhau như SQL, NoSQL, hoặc các nguồn dữ liệu khác không?"
1900.com.vn
Data Science
Q: "Bạn có kinh nghiệm trong việc xử lý và phân tích dữ liệu lớn từ nguồn khác nhau như SQL, NoSQL, hoặc các nguồn dữ liệu khác không?"
07/11/2023
1 câu trả lời

Tôi có kinh nghiệm đáng kể trong việc xử lý và phân tích dữ liệu lớn từ nhiều nguồn khác nhau như SQL, NoSQL cũng như các nguồn dữ liệu đa dạng khác. Qua các dự án và trải nghiệm làm việc, tôi đã có cơ hội áp dụng kiến thức vững về các công cụ và ngôn ngữ truy vấn cơ sở dữ liệu, cùng kỹ năng phân tích dữ liệu để hiểu và trích xuất thông tin quan trọng từ các nguồn dữ liệu đa dạng, hỗ trợ trong việc xây dựng các mô hình và giải quyết các vấn đề trong lĩnh vực Data Science.

"Hãy chia sẻ về kỹ năng của bạn trong việc sử dụng các công cụ và ngôn ngữ lập trình phổ biến như Python, R, và công cụ thống kê như Jupyter, Pandas, hay NumPy."
1900.com.vn
Data Science
Q: "Hãy chia sẻ về kỹ năng của bạn trong việc sử dụng các công cụ và ngôn ngữ lập trình phổ biến như Python, R, và công cụ thống kê như Jupyter, Pandas, hay NumPy."
07/11/2023
1 câu trả lời

Tôi có kỹ năng vững trong việc sử dụng các công cụ và ngôn ngữ lập trình phổ biến như Python và R, cùng với các thư viện như Jupyter, Pandas và NumPy. Qua quá trình làm việc và dự án thực tế, tôi đã áp dụng thành công những kiến thức này để xử lý và phân tích dữ liệu, xây dựng mô hình và trình bày kết quả một cách hiệu quả. Tôi luôn học hỏi và cập nhật kiến thức mới để nắm vững các công nghệ mới nhằm nâng cao khả năng làm việc trong lĩnh vực Data Science.

"Làm thế nào bạn có thể áp dụng kiến thức về Machine Learning và các mô hình dữ liệu để giải quyết các vấn đề thực tế trong lĩnh vực của Data Science?"
1900.com.vn
Data Science
Q: "Làm thế nào bạn có thể áp dụng kiến thức về Machine Learning và các mô hình dữ liệu để giải quyết các vấn đề thực tế trong lĩnh vực của Data Science?"
07/11/2023
1 câu trả lời

Để áp dụng kiến thức về Machine Learning và các mô hình dữ liệu vào giải quyết các vấn đề thực tế trong lĩnh vực Data Science, tôi sẽ tiếp cận mỗi vấn đề với việc thu thập và xử lý dữ liệu cẩn thận để xác định các yếu tố quan trọng. Tôi sẽ lựa chọn các mô hình phù hợp, điều chỉnh chúng và thử nghiệm để tối ưu hóa hiệu suất. Bên cạnh đó, tôi sẽ sử dụng kỹ năng phân tích kết quả mô hình và trích xuất thông tin quan trọng để đưa ra giải pháp hiệu quả cho từng vấn đề cụ thể trong lĩnh vực Data Science.

Bạn nghĩ gì về việc làm tăng ca với vị trí Data Science?
1900.com.vn
Data Science
Q: Bạn nghĩ gì về việc làm tăng ca với vị trí Data Science?
09/11/2023
1 câu trả lời

Việc tăng ca thường xảy ra trong lĩnh vực làm việc nơi tiến độ và thời gian là quan trọng. Điều này có thể được coi là một phần của cuộc sống nghề nghiệp.

 

 

Câu hỏi thường gặp về Data Science

Data science là ngành khoa học dữ liệu, liên quan đến các công việc như tìm tòi, khai thác, thu thập, phân tích và xử lý dữ liệu. Để từ đó tìm ra những insights và thông tin có giá trị, sau đó chuyển hóa các insights này thành hành động.

Một số câu hỏi phỏng vấn Data Science phổ biến:

  • 'Data science' là gì?
  • Khác nhau giữa 'data science' và 'big data' là gì?
  • 'Data scientist' và 'data analysist' khác nhau như thế nào?
  • Đâu là những tính năng căn bản đại diện cho dữ liệu lớn?
  • 'recommender system' là gì?
  • Thử A/B là gì?
  • 'selection bias' là gì?
  • Bạn biết gì về 'Normal Distribution'?
  • Hiệu năng thống kê của độ nhạy là gì?
  • Cái nào tốt hơn - dữ liệu tốt hay mô hình tốt?
  • Điều gì sẽ xảy ra nếu hai người dùng truy cập cùng một tệp HDFS cùng lúc?
  • Lộ trình thăng tiến của Data Science?

Lộ trình thăng tiến của một Data Science có thể biến đổi tùy thuộc vào công ty, ngành công nghiệp, và kinh nghiệm cá nhân. Tuy nhiên, dưới đây là một lộ trình thường thấy cho sự thăng tiến của Data Science:

  • Intern Data Analyst
  • Intern Data Science
  • Junior Data Scientist
  • Data Science
  • Senior Data Scientist 
  • Data Science Manager

Mức lương của vị trí Data Science dao động khoảng từ 20 - 40 triệu đồng/tháng với những người từ 2 - 4 năm kinh nghiệm. Lập trình viên làm việc lâu năm mức lương có thể lên đến 50 triệu đồng/tháng. Cần lưu ý, mức lương này có thể thay đổi tùy thuộc vào nhiều yếu tố như kinh nghiệm, công ty, vị trí làm việc,…

Đánh giá (review) của công việc Data Science được cho là có nhiều cơ hội nhưng cũng không ích thách thức đòi hỏi người lao động phải có sự cố gắng và nỗ lực trong công việc.

Bài viết xem nhiều