1. Data Analyst là gì?
Data Analyst là chuyên viên phân tích dữ liệu, làm nhiệm vụ thu thập, chọn lọc, xử lý và phân tích dữ liệu, từ đó báo cáo được thực trạng của một vấn đề nhất định và đề xuất ra phương án xử lý tối ưu. Làm nhiệm vụ thu thập và giải thích ý nghĩa ẩn chứa bên trong dữ liệu để giải quyết một vấn đề cụ thể. Bên cạnh đó, những vị trí như Data science, Data Engineer cũng thường đảm nhận các công việc tương tự.
2. Lương và mô tả các công việc của Data Analyst
Hiện nay, có rất nhiều thông tin về việc tuyển dụng Data Analyst, trong những thông tin tuyển dụng đó đều có đính kèm theo thông tin về mức lương Data Analyst. Điều đó giúp cho các bạn có được những cơ hội để biết được mức lương của mình ra sao. Trong phần này, chúng tôi sẽ giúp các bạn có thể nắm được mức lương cơ bản của Data Analyst theo số năm kinh nghiệm.
Số năm kinh nghiệm
|
Vị trí
|
Mức lương
|
Dưới 1 năm
|
Data Analyst Intern
|
3.000.000 – 6.000.000 đồng/tháng
|
1 – 3 năm
|
Junior Data Analyst
|
8.000.000 – 20.000.000 đồng/tháng
|
3 - 5 năm
|
Senior Data Analyst
|
10.000.000 – 30.000.000 đồng/tháng
|
5 - 7 năm
|
Data Analyst
|
15.000.000 – 40.000.000 đồng/tháng
|
Trong bối cảnh dữ liệu trở thành tài sản quan trọng nhất của doanh nghiệp, vai trò của Data Analyst ngày càng được chú trọng. Với nhiệm vụ phân tích, diễn giải và cung cấp những thông tin giá trị từ dữ liệu, vị trí này đóng góp trực tiếp vào quá trình ra quyết định chiến lược.
Làm sạch dữ liệu (Data cleaning)
Ngoài việc được nâng cao về kỹ năng thu thập dữ liệu, Data Analyst còn phải nâng cao kỹ năng phân tích dữ liệu để xác định các dữ liệu lỗi hoặc thiếu sót, và có khả năng sử dụng các công cụ làm sạch dữ liệu. Sau khi thu thập dữ liệu, Data Analyst cần làm sạch dữ liệu để đảm bảo dữ liệu chính xác và sẵn sàng cho việc phân tích.
Phân tích và xử lý dữ liệu
Sau bước thu thập dữ liệu, Data Analyst sẽ tiến hành phân tích và xử lý dữ liệu. Vì dữ liệu thu thập về đang ở dạng thô, sẽ bảo gồm cả những dữ liệu không cần thiết. Quá trình xử lý dữ liệu sẽ cần đến các công cụ thống kê như SQL, SPSS, STATA. Kết quả sẽ cho ra con số thống kê cho từng câu hỏi.
Thiết kế báo cáo
Quá trình thiết kế báo cáo đòi hỏi Data Analyst phải vận dụng kỹ năng tư duy và visualize để chuyển đổi dữ liệu từ dạng số thành các biểu đồ trực quan. Chuyên viên có thể sử dụng các công cụ hỗ trợ như Bi Tool, Excel để cải thiện năng suất khi làm báo cáo. Một báo cáo hoàn chỉnh phải có visual trực quan, dễ hiểu để các phòng ban khác có thể dựa vào đó để làm cơ sở cho các quyết định.
Tư vấn cho doanh nghiệp
Sau khi hoàn tất xong bài báo cáo, nhân viên Data Analyst cần báo cáo lại cho doanh nghiệp, giúp ban lãnh đạo nhìn ra thực trạng và vấn đề một cách rõ ràng. Nhờ đó doanh nghiệp sẽ đưa ra những hướng đi đúng đắn trong hiện tại và tương lai.
Thực hiện những công việc được phân công
Trong trường hợp bài báo cáo chưa đạt đủ tiêu chuẩn hoặc chưa đủ dữ liệu để có thể đưa ra quyết định hiệu quả, lúc này Data Analyst sẽ thực hiện thêm các công việc khác theo chỉ định của cấp trên.
3. Để trở thành Data Analyst cần học những gì?
Để trở thành một Data Analyst, bạn cần có nền tảng vững chắc trong nhiều lĩnh vực như khoa học dữ liệu, toán học, thống kê và công nghệ thông tin. Các ngành học phù hợp với nghề này không chỉ cung cấp kiến thức chuyên môn mà còn rèn luyện các kỹ năng phân tích và xử lý dữ liệu, từ đó giúp bạn nắm vững các công cụ và phương pháp cần thiết để phân tích thông tin một cách hiệu quả.
Khoa học Dữ liệu
Ngành Khoa học Dữ liệu tập trung vào việc thu thập, phân tích và trực quan hóa dữ liệu lớn. Sinh viên sẽ được học các kỹ thuật như khai thác dữ liệu (data mining), học máy (machine learning), và trí tuệ nhân tạo (AI). Các môn học trong ngành này giúp xây dựng nền tảng vững chắc trong việc phân tích và dự đoán xu hướng từ dữ liệu. Học ngành này sẽ giúp bạn phát triển kỹ năng phân tích dữ liệu nâng cao và làm việc với các bộ dữ liệu phức tạp.
Công nghệ Thông tin
Ngành Công nghệ thông tin (CNTT) đào tạo sinh viên về các kỹ thuật lập trình, cơ sở dữ liệu, và hệ thống thông tin. Sinh viên học ngành này sẽ được trang bị các kiến thức về hệ thống cơ sở dữ liệu, lập trình Python hoặc R, và sử dụng các công cụ như SQL, Tableau, hoặc Power BI để phân tích dữ liệu. Đây là một ngành học rất phổ biến cho những ai muốn trở thành Data Analyst vì nó cung cấp những kỹ năng cốt lõi trong việc xử lý và phân tích dữ liệu. Hơn nữa, ngành này còn giúp bạn hiểu sâu về các ứng dụng CNTT trong công việc phân tích dữ liệu.
Toán học và Thống kê
Ngành Toán học và Thống kê cung cấp các công cụ và phương pháp phân tích dữ liệu từ góc độ toán học và thống kê. Sinh viên sẽ học về xác suất, hồi quy, phân tích dữ liệu và mô hình toán học giúp xử lý các vấn đề thực tiễn trong phân tích dữ liệu. Kỹ năng phân tích dữ liệu trong ngành này rất mạnh mẽ và có thể áp dụng trong nhiều lĩnh vực, từ tài chính đến y tế. Học ngành này sẽ giúp bạn xây dựng khả năng phân tích và đánh giá dữ liệu một cách khoa học và chính xác.
Ở Việt Nam, có nhiều trường đại học đào tạo các ngành học phù hợp để trở thành Data Analyst. Các trường như Đại học Khoa học Tự nhiên (ĐHQG TP.HCM/Hà Nội) và Đại học Bách Khoa TP.HCM/Hà Nội đều có các chương trình đào tạo về Khoa học Dữ liệu và Công nghệ Thông tin. Các trường như Đại học FPT, Đại học RMIT, và Đại học Kinh tế Quốc dân cũng có các chương trình học liên quan đến phân tích dữ liệu và khoa học dữ liệu. Bên cạnh đó, các trường quốc tế và tư thục như University of Danang – University of Science and Technology và Học viện Công nghệ Bưu chính Viễn thông cũng cung cấp các khóa học về ngành này. Những trường này đều có đội ngũ giảng viên giàu kinh nghiệm và cơ sở vật chất hiện đại để hỗ trợ việc học và nghiên cứu.
Ngoài các bằng cấp đại học, bạn có thể nâng cao kỹ năng và cơ hội nghề nghiệp bằng cách sở hữu các chứng chỉ chuyên môn. Các chứng chỉ có thể giúp bạn khẳng định khả năng trong lĩnh vực phân tích dữ liệu như:
- Microsoft Certified: Data Analyst Associate: Chứng chỉ này xác nhận khả năng sử dụng Microsoft Power BI để phân tích và trực quan hóa dữ liệu.
- Google Data Analytics Professional Certificate: Chứng chỉ này cung cấp các kỹ năng cơ bản về phân tích dữ liệu, bao gồm việc sử dụng các công cụ như Excel, SQL, và Tableau.
- Certified Analytics Professional (CAP): Là chứng chỉ uy tín, chứng minh bạn có năng lực trong việc giải quyết các vấn đề phân tích dữ liệu phức tạp.
- Chứng chỉ từ Coursera, Udemy và DataCamp: Các nền tảng này cung cấp nhiều khóa học chuyên sâu về Python, R, SQL, và các công cụ phân tích dữ liệu như Tableau, Power BI, giúp bạn có thêm kiến thức và kỹ năng thực tế.
4. Tự học Data Analyst bằng cách nào?
Tự học trở thành Data Analyst là một quá trình đòi hỏi kiên nhẫn và sự chủ động, nhưng với các tài nguyên trực tuyến hiện nay, bạn hoàn toàn có thể tự học và phát triển kỹ năng trong lĩnh vực này. Dưới đây là một số bước bạn có thể thực hiện để tự học Data Analyst hiệu quả:
Nắm vững nền tảng toán học và thống kê
Trước khi đi sâu vào phân tích dữ liệu, bạn cần có hiểu biết cơ bản về các khái niệm toán học và thống kê. Các chủ đề như xác suất, phân phối xác suất, hồi quy, và phân tích dữ liệu là những kỹ năng cần thiết để hiểu và xử lý dữ liệu một cách chính xác. Bạn có thể bắt đầu học các khái niệm này qua các khóa học miễn phí trên Khan Academy, Coursera, hoặc edX.
Học các công cụ phân tích dữ liệu
Data Analyst cần thành thạo nhiều công cụ để xử lý và phân tích dữ liệu. Một số công cụ cơ bản mà bạn cần làm quen là:
- Excel: Là công cụ cơ bản nhưng mạnh mẽ cho phân tích dữ liệu, đặc biệt khi làm việc với các bộ dữ liệu nhỏ đến vừa.
- SQL: Học SQL để truy vấn và quản lý dữ liệu trong các cơ sở dữ liệu quan hệ.
- Python hoặc R: Đây là hai ngôn ngữ lập trình phổ biến trong phân tích dữ liệu. Python đặc biệt mạnh mẽ với thư viện như Pandas, NumPy, Matplotlib, và Seaborn để phân tích và trực quan hóa dữ liệu.
- Power BI hoặc Tableau: Các công cụ trực quan hóa dữ liệu giúp bạn tạo báo cáo và dashboard chuyên nghiệp.
Bạn có thể tìm các khóa học trực tuyến miễn phí hoặc có phí trên Coursera, Udemy, hoặc DataCamp để học về các công cụ này.
Thực hành với dữ liệu thực tế
Việc áp dụng kiến thức vào thực tế sẽ giúp bạn củng cố kỹ năng. Bạn có thể bắt đầu tìm kiếm các bộ dữ liệu mở (open datasets) từ các trang như Kaggle, Google Dataset Search, hoặc UCI Machine Learning Repository. Thực hành với những bộ dữ liệu này giúp bạn cải thiện khả năng phân tích và giải quyết các vấn đề thực tế mà bạn sẽ gặp phải trong công việc.
Học các kỹ thuật phân tích nâng cao
Khi đã nắm vững các kỹ năng cơ bản, bạn có thể tìm hiểu thêm các kỹ thuật nâng cao như:
- Machine Learning: Học cách sử dụng các thuật toán học máy để phân tích và dự đoán dữ liệu.
- Xử lý dữ liệu lớn: Tìm hiểu về Hadoop, Spark, và các công cụ xử lý dữ liệu lớn nếu bạn muốn làm việc với các bộ dữ liệu có quy mô lớn.
- Business Intelligence (BI): Học cách sử dụng các công cụ BI như Power BI, Tableau để tạo báo cáo và phân tích dữ liệu theo hướng hỗ trợ ra quyết định kinh doanh.
Tham gia cộng đồng học tập và tìm mentor
Tham gia vào các cộng đồng học tập trực tuyến như Stack Overflow, Reddit (subreddits về Data Science, Data Analytics), hoặc các nhóm học trên Facebook và LinkedIn sẽ giúp bạn tiếp cận với các vấn đề thực tế và nhận lời khuyên từ các chuyên gia. Bạn cũng có thể tìm mentor để giúp đỡ trong quá trình học hỏi.
Xây dựng dự án cá nhân và portfolio
Một cách hiệu quả để thể hiện kỹ năng của mình là xây dựng một portfolio gồm các dự án phân tích dữ liệu thực tế. Bạn có thể thực hiện các dự án về phân tích dữ liệu trong các lĩnh vực bạn yêu thích như tài chính, thể thao, y tế, hoặc thương mại điện tử. Sau khi hoàn thành, bạn có thể đăng tải dự án của mình lên GitHub để chia sẻ với nhà tuyển dụng hoặc cộng đồng.
Bằng cách tự học và áp dụng các kỹ năng vào thực tế, bạn có thể trở thành một Data Analyst chuyên nghiệp mà không cần phải tham gia vào chương trình đào tạo chính thức.
5. Những khó khăn trong công việc Data Analyst
Công việc của một Data Analyst có thể rất thú vị và đầy thử thách, nhưng cũng không thiếu những khó khăn và thách thức mà bạn cần phải đối mặt. Dưới đây là một số khó khăn phổ biến trong công việc này:
Dữ liệu không đầy đủ hoặc thiếu chính xác
Một trong những khó khăn lớn nhất mà Data Analyst phải đối mặt là dữ liệu không đầy đủ hoặc thiếu chính xác. Dữ liệu có thể chứa các giá trị sai, thiếu thông tin hoặc bị nhiễu, điều này khiến cho việc phân tích trở nên khó khăn. Việc làm sạch và xử lý dữ liệu để đảm bảo độ chính xác là một bước quan trọng, nhưng cũng tốn thời gian và công sức.
Khối lượng dữ liệu khổng lồ
Dữ liệu ngày càng trở nên phức tạp và lớn hơn, đặc biệt là với sự phát triển của công nghệ và các nguồn dữ liệu không ngừng gia tăng. Việc xử lý, phân tích và trực quan hóa một lượng lớn dữ liệu có thể trở thành một thử thách, đòi hỏi sự am hiểu về các công cụ và kỹ thuật xử lý dữ liệu hiệu quả như Hadoop, Spark hoặc cơ sở dữ liệu phân tán.
Phải đối mặt với yêu cầu và mong đợi không rõ ràng từ người dùng
Data Analyst thường xuyên phải làm việc với các bộ phận khác nhau trong công ty và hiểu rõ yêu cầu của họ. Tuy nhiên, đôi khi những yêu cầu này có thể không rõ ràng hoặc thay đổi liên tục, điều này gây khó khăn trong việc xác định mục tiêu phân tích và hướng đi của công việc. Việc giao tiếp và làm rõ yêu cầu là một yếu tố quan trọng nhưng cũng không hề dễ dàng.
Khó khăn trong việc trực quan hóa dữ liệu
Mặc dù dữ liệu có thể chứa rất nhiều thông tin giá trị, nhưng việc chuyển tải các thông tin này một cách dễ hiểu và trực quan là một thử thách lớn. Đôi khi, việc chọn đúng phương pháp trực quan hóa hoặc công cụ phù hợp có thể quyết định sự thành công của một dự án phân tích. Data Analyst cần có khả năng tạo ra những báo cáo hoặc dashboard không chỉ chính xác mà còn dễ hiểu cho người không chuyên.
Cập nhật và học hỏi công nghệ mới
Công nghệ và công cụ phân tích dữ liệu luôn thay đổi và phát triển, vì vậy Data Analyst cần liên tục cập nhật kiến thức và học hỏi về các công cụ mới như học máy, trí tuệ nhân tạo, hoặc các phần mềm phân tích dữ liệu mới nhất. Việc duy trì sự cập nhật này đôi khi có thể gây áp lực và đòi hỏi thời gian học hỏi liên tục.
Nhìn chung, công việc của một Data Analyst yêu cầu sự kiên nhẫn, kỹ năng giải quyết vấn đề, và khả năng làm việc với dữ liệu không hoàn hảo. Tuy nhiên, với những kỹ năng và kiến thức đúng đắn, bạn hoàn toàn có thể vượt qua những khó khăn này và đạt được thành công trong nghề.
>>Đọc thêm: Việc làm Data Analyst đang tuyển dụng
>>Đọc thêm: Việc làm Senior Data Analyst đang tuyển dụng
>>Đọc thêm: Việc làm Data Analyst Intern đang tuyển dụng