Điều kiện và Lộ trình trở thành một Machine learning Engineerr?
Kỹ sư máy học là một chuyên gia trong lĩnh vực công nghệ và khoa học máy tính, chuyên về việc phát triển và triển khai các hệ thống thông minh và các ứng dụng sử dụng trí tuệ nhân tạo. Các kỹ sư máy học sử dụng các thuật toán và phương pháp máy học để xây dựng các mô hình dự đoán, phân loại, và tối ưu hóa dữ liệu. Họ làm việc trên nhiều lĩnh vực, từ xử lý ngôn ngữ tự nhiên cho đến thị giác máy tính và tự động hóa.
Lộ trình thăng tiến của Kỹ sư máy học
Lộ trình thăng tiến của Kỹ sư máy học có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này
Số năm kinh nghiệm |
0 - 1 năm |
2 - 6 năm |
Vị trí |
Intern Machine Learning |
Kỹ sư máy học |
Lộ trình thăng tiến của Kỹ sư máy học có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.
1. Intern Machine Learning
Mức lương: 4 - 8 triệu/ tháng
Kinh nghiệm làm việc: Dưới 1 năm
Intern Machine Learning là một công việc thực tập trong lĩnh vực Học Máy, một phần quan trọng của Trí Tuệ Nhân Tạo (AI). Người làm Intern Machine Learning thường là sinh viên hoặc người mới bắt đầu trong lĩnh vực này, họ tham gia vào các dự án để học hỏi và áp dụng các thuật toán máy học để giải quyết các vấn đề thực tế.
>> Đánh giá: Công việc của một Intern Machine Learning yêu cầu khả năng học hỏi liên tục, bởi vì lĩnh vực này luôn thay đổi nhanh chóng. Interns cần phải tự học và nghiên cứu các tiến bộ mới trong Machine Learning để cải thiện kỹ năng của họ.
2. Kỹ sư máy học
Mức lương: 10 - 25 triệu/ tháng
Kinh nghiệm làm việc: 2 - 6 năm
Kỹ sư máy học là một chuyên gia trong lĩnh vực công nghệ và khoa học máy tính, chuyên về việc phát triển và triển khai các hệ thống thông minh và các ứng dụng sử dụng trí tuệ nhân tạo. Các kỹ sư máy học sử dụng các thuật toán và phương pháp máy học để xây dựng các mô hình dự đoán, phân loại, và tối ưu hóa dữ liệu. Họ làm việc trên nhiều lĩnh vực, từ xử lý ngôn ngữ tự nhiên cho đến thị giác máy tính và tự động hóa.
>> Đánh giá: Machine Learning là một lĩnh vực tương đối mới. Vẫn còn nhiều giải pháp, công cụ, thuật toán và ứng dụng đang chờ được tạo ra và khám phá. Tương tự như kỹ sư phần mềm, kỹ sư máy học về bản chất phải coi trọng việc học. Và điều cần thiết là sử dụng các khóa học, blog, hướng dẫn và podcast để luôn dẫn đầu trong một lĩnh vực đang thay đổi nhanh chóng.
5 bước giúp Kỹ sư máy học thăng tiến nhanh trong trong công việc
Tò mò và không ngừng học hỏi
Lĩnh vực học máy không ngừng phát triển với các kỹ thuật, công cụ mới và các phương pháp hay nhất thường xuyên xuất hiện. Một kỹ sư máy học thành công phải sở hữu trí tò mò bẩm sinh và mong muốn học hỏi không ngừng. Điều này bao gồm cập nhật những nghiên cứu mới nhất, tham dự các hội nghị và hội thảo, đồng thời tham gia vào các cộng đồng trực tuyến nơi họ có thể học hỏi và cộng tác với các chuyên gia khác.
Rèn luyện khả năng thích ứng linh hoạt
Các dự án học máy thường yêu cầu các kỹ sư thích ứng với các công nghệ, công cụ và phương pháp mới. Một kỹ sư thành công phải có khả năng thích ứng và linh hoạt, sẵn sàng học các kỹ năng mới và xoay chuyển cách tiếp cận của họ khi cần thiết. Sự linh hoạt này cho phép họ luôn dẫn đầu và duy trì sự phù hợp trong thế giới AI có nhịp độ nhanh.
Chuyên môn lập trình và kỹ thuật phần mềm
Các kỹ sư máy học phải thành thạo các ngôn ngữ lập trình như Python, R hoặc Java, vì những ngôn ngữ này thường được sử dụng để phát triển các mô hình học máy. Ngoài ra, họ phải thành thạo các nguyên tắc công nghệ phần mềm, bao gồm kiểm soát phiên bản, thử nghiệm và tối ưu hóa mã. Kiến thức này cho phép họ tạo mã hiệu quả, có thể mở rộng và có thể bảo trì, có thể tích hợp liền mạch vào môi trường sản xuất.
Kết nối với các chuyên gia
Kết nối với các chuyên gia trong ngành bằng cách tham dự các sự kiện, tham gia cộng đồng trực tuyến và kết nối với đồng nghiệp trên các nền tảng như LinkedIn. Mạng có thể giúp bạn khám phá các cơ hội việc làm và học hỏi từ những người khác trong lĩnh vực này.
Tăng năng suất lao động
Tăng năng suất làm việc là yếu tố quan trọng giúp bạn thăng tiến trong sự nghiệp. Nếu bạn muốn lên một nhà lãnh đạo, tăng năng suất doanh nghiệp có thể giúp cải thiện kết quả kinh doanh và giúp doanh nghiệp đón đầu, dự báo những thăng trầm trong kinh doanh tốt hơn các doanh nghiệp khác. Dù bạn là ai, năng suất làm việc là vấn đề hàng đầu bạn cần quan tâm nếu muốn đạt được những mục tiêu dài hạn trong công việc và cuộc sống.
Yêu cầu tuyển dụng của Kỹ sư máy học
Để thực hiện tốt các nhiệm vụ được giao, Kỹ sư máy học cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan:
Yêu cầu bằng cấp và kiến thức chuyên môn
-
Kiến thức chuyên môn: Cử nhân về khoa học máy tính, khoa học dữ liệu hoặc một lĩnh vực liên quan. Một số vị trí có thể yêu cầu bằng thạc sĩ hoặc thậm chí bằng tiến sĩ, đặc biệt là trong các vai trò tập trung vào nghiên cứu. Có được kiến thức về các thư viện và khuôn khổ máy học, chẳng hạn như TensorFlow, PyTorch và Scikit-learning.
-
Kiến thức về Machine Learning: Ứng viên nên có kiến thức cơ bản về các khái niệm, các thuật toán và phương pháp trong Machine Learning. Điều này bao gồm hiểu biết về học máy giám sát và học máy không giám sát, cũng như khả năng đánh giá và cải tiến các mô hình Machine Learning.
-
Chứng chỉ chuyên ngành: Có các chứng chỉ nhà phát triển TensorFlow của Google, Cộng tác viên kỹ sư Azure AI của Microsoft hoặc Chuyên gia về máy học của AWS, để thể hiện kiến thức chuyên môn và cam kết của bạn đối với lĩnh vực này.
-
Kiến thức về dữ liệu: Kỹ sư máy học dự kiến sẽ có nhiều năng lực giống như Nhà khoa học dữ liệu, bao gồm lập mô hình dữ liệu, thành thạo kỹ thuật với các ngôn ngữ lập trình như Python và Java cũng như hiểu cách đánh giá các thuật toán, toán học và mô hình dự đoán.
Yêu cầu về kỹ năng
-
Kỹ năng phân tích vấn đề tốt: Các kỹ sư máy học thường phải đối mặt với những thách thức phức tạp đòi hỏi các giải pháp sáng tạo. Một kỹ sư thành công phải có kỹ năng phân tích và giải quyết vấn đề xuất sắc để xác định các mẫu trong dữ liệu, hiểu cấu trúc cơ bản của vấn đề và phát triển các chiến lược hiệu quả để giải quyết chúng.
-
Giao tiếp và hợp tác hiệu quả: Các kỹ sư máy học thường làm việc trong các nhóm đa ngành, cộng tác với các nhà khoa học dữ liệu. Kỹ năng cộng tác và giao tiếp mạnh mẽ là điều cần thiết để truyền đạt hiệu quả các ý tưởng và khái niệm phức tạp cho các thành viên trong nhóm với các cấp độ chuyên môn kỹ thuật khác nhau.
-
Chú ý đến chi tiết và chất lượng: Việc phát triển các mô hình học máy hiệu quả đòi hỏi độ chính xác cao và chú ý đến từng chi tiết. Một kỹ sư thành công phải kỹ lưỡng trong công việc của họ, đảm bảo rằng các mô hình của họ chính xác, hiệu quả và đáng tin cậy.
-
Kỹ năng làm việc với data: Dữ liệu dạng số đang ngày càng trở nên phổ biến hơn trong xã hội hiện đại. Do đó, kỹ năng làm việc với dữ liệu, đặc biệt là các dữ liệu khổng lồ (big data) rất quan trọng nếu bạn muốn phát triển trong nghề Kỹ sư máy học.
Yêu cầu khác
-
Kinh nghiệm với deep learning framework
Để tự giải quyết cho mình các vấn đề bằng Machine Learning, giờ là lúc bạn cần tới sức mạnh của Framework. Bản thân các ML framework cũng như framework trong các lĩnh vực khác, bản thân nó hỗ trợ rất nhiều công cụ, thư viện để làm việc nhanh chóng, thuận tiện và an toàn hơn.
-
Sử dụng thông thạo công cụ trong Machine learning
Kỹ sư máy học không chỉ phải có kiến thức về cách viết mã và phát triển bằng các ngôn ngữ lập trình như Python, Java và C ++, nhiều kỹ sư học máy cũng thấy hữu ích khi sử dụng thành thạo các công cụ và tài nguyên sau: TensorFlow, Spark và Hadoop, R Programming, Apache Kafka, Amazon Machine Learning,....
Các trường đào tạo ngành Công nghệ thông tin tốt nhất Việt Nam hiện nay?
Một số ngôi trường Đại học hàng đầu về đào tạo ngành Công nghệ thông tin tốt nhất Việt Nam:
- Đại học Bách khoa Hà Nội
- Trường Đại học Công nghiệp Hà Nội
- Trường Đại học Xây dựng Hà Nội
- Trường Đại học Giao thông vận tải
- Trường Đại học Công nghệ Giao thông Vận tải
- Trường Đại học Công nghệ thành phố Hồ Chí Minh (HUTECH)
- Học viện Kỹ thuật Mật Mã
- Đại học Bách Khoa - Đại học Quốc gia TP. HCM
- Trường Đại học Bách khoa Đà Nẵng
- Đại học Sư phạm Kỹ thuật Thành phố Hồ Chí Minh
- Trường Đại học Bách Khoa TP.HCM (HCMUT)
- Trường Đại học Công nghệ Thông tin (UIT)
- Trường Đại học Khoa học Tự nhiên (HUSC)
Nghề nghiệp liên quan
Dưới đây là những nghề nghiệp liên quan với các kỹ năng của Machine learning Engineerr. Khám phá một số quá trình chuyển đổi nghề nghiệp của Machine learning Engineerr phổ biến nhất, cùng với các kỹ năng tương đương.