Nghiên cứu, đề xuất, tư vấn, triển khai giải pháp công nghệ, quy hoạch, tối ưu, quản lý dữ liệu và phát triển hệ thống cho hệ thống dữ liệu và báo cáo tuân thủ (thông tư, công văn của Ngân hàng nhà nước và các Tổ chức tuân thủ), nguồn dữ liệu trong nội bộ và từ các công ty con của ngân hàng. Tham gia quản lý BAU và xây dựng, triển khai các dự án và sáng kiến chiến lược liên quan. Đảm bảo các hệ thống dữ liệu và báo cáo nêu trên được phát triển một cách hiệu quả, bền vững và đáp ứng được yêu cầu của người sử dụng một cách tối ưu nhất.
1. Đóng vai trò lead chính trong việc thực thi:
- Phân tích yêu cầu nghiệp vụ cho hệ thống dữ liệu
- Phân tích thiết kế luồng dữ liệu cho từng CR các phân vùng dữ liệu của DPC nhằm đáp ứng yêu cầu nghiệp vụ. Tham gia dựng môi trường, thực hiện lập trình phát triển, kiểm thử đơn lẻ (unit test)
- Tham gia golive các yêu cầu thay đổi hệ thống
- Tổ chức liên tục cải tiến tối ưu về mặt thiết kế, góp phần làm giảm thời gian xử lý dữ liệu cũng như tài nguyên sử dụng trên các hệ thống dữ liệu
2. Đóng vai trò tư vấn:
- Tham vấn cho các đơn vị nghiệp vụ, trung tâm và khối CNTT về giải pháp xử lý khắc phục khi xảy ra các lỗi phức tạp. Hỗ trợ phân tích xử lý lỗi vận hành hệ thống khi cần áp dụng kỹ thuật xử lý dữ liệu chuyên sâu.
- Nâng cấp phần mềm, cài đặt triển khai các tầng ứng dụng có liên quan tới ETL, báo cáo, app C#.
- Với một số hệ thống ứng dụng có thể cần quản lý trực tiếp việc vận hành dữ liệu và báo cáo
3. Hỗ trợ, cùng tham gia trực tiếp triển khai, hoặc được tham vấn ý kiến để hoàn thành các công việc:
- Nghiên cứu phát triển các giải pháp, công nghệ mới liên quan tới Quản lý dữ liệu và báo cáo. Triển khai các sáng kiến chiến lược trên nền tảng công nghệ mới phục vụ cho việc duy trì ổn định và nâng cao dịch vụ thiết kế và quản lý dữ liệU
- Tham gia triển khai các dự án đặc thù theo chỉ đạo của BLĐ
4. Hỗ trợ gián tiếp trong việc hoàn thành các công việc sau:
- Tiếp nhận, phân tích yêu cầu nghiệp vụ về nhu cầu khai thác và sử dụng số liệu phục vụ cho báo cáo nội bộ hoặc báo cáo tuân thủ. Sử dụng số liệu để tư vấn, kiểm tra tính logic và đầy đủ trong quy tắc tính do nghiệp vụ đưa ra
- Kiểm thử dữ liệu và hệ thống. Quy tắc kiểm soát vận hành dữ liệu dựa trên logic thiết kế hệ thống
5. Hỗ trợ, cùng tham gia trong việc thực thi:
Xây dựng phát triển, giao việc, quản lý đội ngũ chuyên môn trong phạm vi chức năng công việc được giao về:
- Quản lý vận hành dữ liệu
- Phát triển giải pháp (phân tích nghiệp vụ, mô hình hóa lưu trữ, thiết kế logic xử lý dữ liệu)
- Phát triển giải pháp về nền tảng công nghệ, CSDL
6. Triển khai các dự án đặc thù theo chỉ đạo của BLĐ
Yêu cầu công việc:
- Tốt nghiệp Đại học hoặc cao hơn liên quan đến 1 trong các ngành kinh tế, tài chính, ngân hàng, hoặc công nghệ thông tin, khoa học máy tính, toán tin ứng dụng
- Tối thiểu 4 năm trong lĩnh vực quản lý dữ liệu/báo cáo/phân tích
- Yêu cầu kinh nghiệm: truy vấn, tổ chức, phân tích dữ liệu, phân tích yêu cầu nghiệp vụ ngân hàng, xây dựng báo cáo; Sử dụng các công nghệ cập nhật để xử lý dữ liệu để phát triển và vận hành; Kiểm thử dữ liệu và phần mềm tài chính ngân hàng; Triển khai cùng và quản lý đối tác công nghệ thông tin.
- Ưu tiên kinh nghiệm: Cơ sở dữ liệu quan hệ RDBMS, NoSQL; Thiết kế lập trình cho các hệ thống như hệ thống Data warehouse, Data lake, lakehouse, API, CI/CD. ETL, ELT, các dịch vụ xử lý dữ liệu và luồng dữ liệu dạng batch/stream, quản lý luồng vận hành: SSIS, Datastage, ODI, Spark, Airflow, DBT, Redshift v.v..;
- Có kinh nghiệm với ít nhất 1 trong các BI Tool là một lợi thế
Quyền lợi:
- Thu nhập hấp dẫn, lương thưởng cạnh tranh theo năng lực (16-18 tháng lương/năm)
- Thưởng các Ngày lễ, Tết cạnh tranh
- Được vay ưu đãi với lãi suất hấp dẫn theo quy định của ngân hàng
- Chế độ ngày phép 12-18 ngày phép/năm theo cấp bậc
- Bảo hiểm sức khỏe VPBank care cho CBNV theo cấp bậc
- Được tham gia các khóa đào tạo tùy thuộc vào Khung đào tạo cho từng vị trí
- Thời gian làm việc: từ thứ 2 – thứ 6 & 02 sáng thứ 7/ tháng
Ngân hàng TMCP Việt Nam Thịnh Vượng (VPBank) được thành lập ngày 12 tháng 8 năm 1993, là một trong những ngân hàng thương mại cổ phần có lịch sử lâu đời ở Việt Nam. Sau 28 năm hoạt động, VPBank đã phát triển mạng lưới lên 233 chi nhánh/phòng giao dịch với đội ngũ gần 25.000 cán bộ nhân viên tại thời điểm ngày 30 tháng 6 năm 2021. Hết năm 2020, tổng thu nhập hoạt động của VPBank đạt 39.000 tỷ đồng. Lợi nhuận trước thuế của VPBank năm 2020 đạt mức 13.019 tỷ đồng, hoàn thành 127,5% kế hoạch và tăng 26,1% so với năm 2019, xếp thứ 4 trong các ngân hàng tại Việt Nam. Năm 2023 VPBank đạt lợi nhuận đạt 24.000 tỷ đồng.
Chính sách bảo hiểm
- Được hưởng BHXH, BHYT, BHTN theo Luật lao động
- Được hưởng Bảo hiểm VPBank care
Các hoạt động ngoại khóa
- Team Building
- Du lịch hàng năm
- Câu lạc bộ: thiện nguyện, nhiếp ảnh VP Zòm…
Lịch sử thành lập
- Ngày 12/08/1993, Ngân hàng TMCP Việt Nam Thịnh Vượng (VPBank) được thành lập.
- Hết năm 2019, tổng thu nhập hoạt động đạt 36.356 tỷ đồng, tăng 20,3% so với cùng kỳ. Lợi nhuận trước thuế đạt mức cao nhất trong lịch sử 10.324 tỷ đồng, vượt 9% kế hoạch và tăng 12,3% so với năm 2018.
- Ngày 19/1/2021, VPBank 5 năm liên tiếp nằm trong top 50 công ty kinh doanh hiệu quả nhất Việt Nam
- Ngày 27/1/2021, củng cố nền tảng, sẵn sàng sức bật cho 2022
- Ngày 17/2/2022, giá trị thương hiệu VPBank đạt gần 900 triệu USD, tăng 38 bậc trong BXH 500 ngân hàng giá trị nhất toàn cầu
- Ngày 4/4/2022, VPBank tái định vị thương hiệu, tuyến bố sứ mệnh mới “Vì một Việt Nam thịnh vượng”
- Ngày 20/4/2022 VPBank trên đà bứt phá, tăng trưởng mạnh về quy mô và lợi nhuận trong quý 1
- Ngày 1/5/2022, VPBank và SMBC ký MoU về hợp tác kinh doanh trong chuyến thăm của Thủ tướng Nhật Bản đến Việt Nam
Mission
Tiên phong đổi mới, nâng tầm chất lượng dịch vụ tài chính vượt trội cho khách hàng và đối tác, phát triển hiệu quả mang lại các giá trị thịnh vượng bền vững cho cổ đông, cộng đồng và xã hội.
Review VPBANK
Ot có trả lương theo quy định. Ot không quá nhiều.
Môi trường làm việc năng động, nhiều hoạt động nội bộ (ID)
Môi trường làm việc có nhiều cơ hội phát triển(IT)
Mọi người cũng đã tìm kiếm
Công việc của Data Engineer là gì?
Data Engineer hay kỹ sư chuyên về dữ liệu thường làm các công việc như phân tích nguồn dữ liệu, tích hợp thông tin giữa các hệ thống nhất với nhau, chuyển đổi và đồng bộ các dữ liệu trên nhiều hệ thống riêng biệt. Các nguồn dữ liệu ở đây được biết đến như các phần mềm website trong hoạt động các lĩnh vực bán hàng, nhân sự, tài chính, kế toán,....Bên cạnh đó, những vị trí như Data science, Data Analyst cũng thường đảm nhận các công việc tương tự.
Mô tả công việc của vị trí Data Engineer
Phân tích, tổng hợp, lưu trữ dữ liệu
Data Engineer kết hợp cùng DBA tạo ra các vùng lưu trữ dữ liệu từ các nguồn hệ thống thích hợp và mang lại hiệu quả cao. Nhiệm vụ của kỹ sư dữ liệu là đưa các dữ liệu vào Database và File Sever bằng cách (FTP, drag and drop…) và lưu trữ bằng (.csv, xlsx, .dat, database).
Chuẩn hóa và chuyển đổi logic, tập trung nguồn dữ liệu
Các dữ liệu được Data Engineer lưu chuyển đến các nguồn lữu trữ khác nhau nhằm mục đích so sánh, thêm dữ liệu và dự phòng các dữ liệu cho nhiều trường hợp khác nhau. Kỹ sư dữ liệu tập trung nguồn dữ liệu đưa các thông tin về một nguồn lưu trữ chung với các mô hình chuyên biệt, dành cho việc khôi phục phân tích các dữ liệu cần thiết trong các tình huống dự phòng.
Phân tích và trích xuất dữ liệu
Data Engineer sẽ kết hợp cùng với DBA (Database Administration) để tạo các vùng lưu trữ dữ liệu, đồng thời đảm bảo các yếu tố về bảo mật riêng tư, tính hiệu quả. Bên cạnh đó sẽ theo dõi và kiểm tra các nguồn dữ liệu được đưa từ các Database.
Triển khai machine learning cho hệ thống dữ liệu
Các mô hình học máy được thiết kế bởi các Data Engineers. Các Data Engineer chịu trách nhiệm triển khai chúng vào môi trường sản xuất. Điều này đòi hỏi phải cung cấp cho mô hình dữ liệu được lưu trữ trong kho hoặc đến trực tiếp từ các nguồn, định cấu hình thuộc tính dữ liệu, quản lý tài nguyên máy tính, thiết lập công cụ giám sát, v.v.
Data Engineer có mức lương bao nhiêu?
Lương cơ bản
Lương bổ sung
228 - 387 triệu
/nămLộ trình sự nghiệp Data Engineer
Tìm hiểu cách trở thành Data Engineer, bạn cần có những kỹ năng và trình độ học vấn nào để thành công cũng như đạt được mức lương mong đợi ở mỗi bước trên con đường sự nghiệp của bạn.
Số năm kinh nghiệm
Điều kiện và Lộ trình trở thành một Data Engineer?
Yêu cầu tuyển dụng của Data Engineer
Để thực hiện tốt các nhiệm vụ được giao, Data Engineer cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan:
Yêu cầu bằng cấp và kiến thức chuyên môn
-
Bằng cấp và chuyên ngành: Yêu cầu ứng viên đang theo học hoặc mới tốt nghiệp bằng Đại học chuyên ngành liên quan như Khoa học Dữ liệu, Khoa học Máy tính, Kỹ thuật Máy tính, Toán học, Thống kê, hoặc các ngành tương đương.
-
Kiến thức về bảo mật dữ liệu: Bảo mật dữ liệu là một yêu cầu quan trọng. Data Engineers cần hiểu về các biện pháp bảo mật và kiến thức về quyền truy cập dữ liệu.
-
Kỹ năng xử lý dữ liệu: Khả năng xử lý và biến đổi dữ liệu là quan trọng. Data Engineers cần hiểu về các công cụ và framework xử lý dữ liệu như Apache Spark, Apache Flink, hoặc Apache Kafka.
Yêu cầu về kỹ năng
-
Kỹ năng lập trình: Yêu cầu đối với Data Engineer là cần biết cơ bản về SQL, Python, Oracle. Kỹ sư dữ liệu không yêu cầu phải biết sâu về lập trình, tính toán nhưng phải nắm rõ các khái niệm và giá trị đằng sau các công thức hiển thị ở màn hình.
-
Kỹ năng phân tích logic: Kỹ năng phân tích logic luôn cần thiết trong các công việc cần sự chính xác và có tính liên kết với nhau. Data Engineer phải biết cách phân tích và tìm ra được ý nghĩa của những con số cũng như dữ liệu khô khan. Dựa vào đó, công ty có thể nhìn nhận được vấn đề để tìm ra hướng giải quyết phù hợp.
-
Kỹ năng thiết kế và trình bày báo cáo: Sau khi hoàn thành các công việc phân tích, bạn sẽ thu thập dữ liệu và lập bảng báo cáo trình bày lên cấp trên. Việc thiết kế và trình bày báo cáo phải mang tính dễ hiểu, dễ đưa ra các nhận định so sánh. Để giúp công việc trở nên thuận lợi hơn bạn có thể tự học hỏi và xem thêm các công cụ hỗ trợ thiết kế báo cáo.
Yêu cầu khác
-
Kinh nghiệm: Yêu cầu các Data Engineer đã có 1 - 2 năm kinh nghiệm. Hiểu rõ về các mô hình dữ liệu, thuật toán, kỹ thuật chuyển đổi dữ liệu. Có kinh nghiệm liên quan đến các giải pháp BI và ETL (trích xuất, chuyển đổi, tải dữ liệu) liên quan đến kho dữ liệu, các công cụ phân tích. Sử dụng được những công cụ chuyên dụng như Hadoop, Kafka,…
Lộ trình thăng tiến của Data Engineer
Lộ trình thăng tiến của Data Engineer có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.
1. Intern Data Engineer
Mức lương: 2 - 4 triệu/ tháng
Kinh nghiệm làm việc: Dưới 1 năm
Intern Data Engineer là người được đào tạo, hướng dẫn đồng thời chịu trách nhiệm hỗ trợ các công việc thực tế của một Data Engineer thực thụ để bồi dưỡng thêm kinh nghiệm, nắm rõ được trách nhiệm ngành nghề của mình. Áp dụng nguyên tắc phần mềm, công nghệ vào phát triển, bảo trì, thiết kế, kiểm tra và đánh giá các phần mềm máy tính.
>> Đánh giá: Trong lĩnh vực khoa học dữ liệu, Intern Data Engineer là một trong những vị trí được đánh giá tương đối phức tạp và đòi hỏi nhiều kỹ năng. Theo đó, vai trò của Intern Data Engineer đó là thực hiện các phân tích, đánh giá dữ liệu quan trọng cho các hoạt động của doanh nghiệp. Là công việc thu hút rất nhiều ứng viên trẻ mới ra trường bởi mức lương hấp dẫn và lộ trình phát triển rộng mở.
>> Xem thêm: Việc làm Thực tập sinh Data Engineer cho người mới
2. Data Engineer
Mức lương: 18 - 30 triệu/ tháng
Kinh nghiệm làm việcb 1 - 4 năm
Data Engineer thường làm các công việc như phân tích nguồn dữ liệu, tích hợp thông tin giữa các hệ thống nhất với nhau, chuyển đổi và đồng bộ các dữ liệu trên nhiều hệ thống riêng biệt. Các nguồn dữ liệu ở đây được biết đến như các phần mềm website trong hoạt động các lĩnh vực bán hàng, nhân sự, tài chính, kế toán,....
>> Đánh giá: Doanh nghiệp hoạt động kinh doanh hiện nay không chỉ quan tấm đến vấn đề quản lý nguồn dữ liệu mà họ còn có mong muốn tìm ra hướng giải quyết mở rộng tài nguyên để lưu trữ và kiểm soát nguồn dữ liệu. Để làm được như vậy họ cần có Data Engineer - người sẽ giúp họ thực hiện các giải pháp trên. Chính vì thế đây là ngành nghề có xu hướng tuyển dụng tăng trong các năm tiếp theo.
>> Xem thêm: Việc làm Data Engineer đang tuyển dụng
5 bước giúp Data Engineer thăng tiến nhanh trong trong công việc
Trang bị các chứng chỉ liên quan
Bạn có thể ghi danh vào những khóa học dài hạn hoặc những chứng chỉ online để vừa củng cố chuyên môn, vừa được chứng nhận có kiến thức về một lĩnh vực. Các Data Engineer tiềm năng có thể tìm hiểu việc có được các chứng chỉ chuyên môn như AWS Certified Data Analytics, Microsoft Certified: Azure Data Engineer Associate, hoặc các khóa học online uy tín cũng sẽ giúp bạn khẳng định năng lực và tăng khả năng cạnh tranh trên thị trường lao động.
Phát triển kỹ năng thống kê
Đây cũng là kiến thức cơ bản bạn cần nắm. Bạn nên bắt đầu nghiêm túc với các môn học xác suất thống kê, thống kê mô tả để nắm được các khái niệm cơ bản như nghịch lý Simpson, phân tích dữ liệu khám phá (EDA), liên kết các biến,… Đó sẽ là tiền đề vững chắc để bạn phát triển hơn trong nghề.
Có khả năng thu thập, xử lý và phân tích dữ liệu
Dữ liệu ngày nay vô cùng đa dạng và đến từ nhiều nguồn khác nhau (như bảng khảo sát, thống kê mạng xã hội, điện thoại di động,...). Từ đống dữ liệu “lộn xộn” đó bạn phải xử lý về cùng một ngôn ngữ mà máy đọc được. Vì vậy bạn cần chú trọng đến các kỹ năng này để làm việc hiệu quả, năng suất, tiết kiệm thời gian hơn.
Đầu óc tư duy nhạy bén
Với một Data Engineer cần phải tư duy hơn người bình thường. Bạn là người làm việc với dữ liệu và sử dụng bộ não để nhìn nhận từ nhiều góc độ để tìm ra giải pháp hiệu quả nhất. Do đó, nếu bạn không có cái nhìn đa chiều thì rất khó để giải quyết được vấn đề.
Hiểu rõ thuật toán Machine Learning
Đây có thể cho là kỹ năng cần thiết nhất đối với một Data Engineer. Hiểu đơn giản, Machine Learning là “dạy” máy tính học các dữ liệu lịch sử, dữ liệu có sẵn để đưa ra được các quyết định tự trị một cách thông minh. Hiểu rõ cơ chế hoạt động này sẽ giúp Data Engineer tiết kiệm được nhiều thời gian trong việc khám phá, dự báo từ dữ liệu.
Đọc thêm: