Responsibilities
- Design and implement innovative analytical solution using NoSQL & SQL and other Big Data (Hadoop, Spark) related technologies, evaluating new features and architecture in Azure.
- Develop, maintain and support ETL/ELT solutions for the project
- Implement and manage Azure Databricks, Azure Data Factory and Azure Synapse Analytics
- Work with product and engineering teams
- Build collaborative partnerships with architects, technical leads and key individuals within other functional groups
- Participate in code review and test solutions
- Write project documentation
- At least 5 years of working experience in Big Data technologies with a bachelor's degree in computer science, Information Technology, Software Engineering or equivalent
- Solid skills in infrastructure troubleshooting, support and practical experience in performance tuning and optimization, bottleneck problem analysis.
- Strong experience with Python, SQL, Apache Spark, ETL/ELT Solutions
- Familiar with Azure Cloud data services (Azure Databricks, Azure Data Factory, Azure Synapse Analytics)
- Good understanding of data structures, data modeling and software architecture
- Experience in Queues and Stream processing (Kafka, Flink)
- Experience in designing and building ETL processes (extractions, data load, aggregation, Talend, etc.)
- By choosing EPAM Vietnam, you're getting a job at a Vietnam Best Workplace™ certified company (2022-23 and 2023-24)
- You'll work with the latest and most advanced technologies on exciting global projects with a supportive multicultural team where your voice matters
- We prioritize a healthy work-life balance with a flexible hybrid working model and generous annual leave of up to 19 days
- We offer a transparent career path and an individual roadmap to engineer your future & accelerate your journey
- At EPAM, you can find vast opportunities for self-development: access to over 25,000 online courses and libraries from industry leaders, English classes, mentoring programs, partial grants of certification, and experience exchange with colleagues around the world. You will learn, contribute, and grow with us
- EPAM Systems Inc. (EPAM) is a leading digital transformation services and product engineering company. Since 1993, we have used our software engineering expertise to become a leading global provider of digital engineering, cloud and AI-enabled transformation services, as well as a leading business and experience consulting partner for global enterprises and ambitious startups. Added to the S&P 500 and the Forbes Global 2000 in 2021 and recognized by Glassdoor as a Best Workplace in 2023 and 2024, our multidisciplinary teams of 52,650+ employees serve customers in 55 countries and regions, across six continents (*Data as of Q2 2024).
- Established in 2019, EPAM Vietnam has about 150 employees and is still expanding rapidly. We offer a multicultural environment where our tech talents can proactively develop world-class solutions directly with international clients. We adopt a global growth strategy, thinking and acting like start-ups, working in multi-disciplinary teams, and delivering results. You’ll find the interesting challenges typically dealt with at a start-up, yet you’ll be in a highly professional corporate setting.
How We Hire
- Here, we summarize the typical journey to finding a job within EPAM.
- Apply and tell us about yourself!
- Go through some standard interviews:
- - General interview with a recruiter
- - Technical interview with our technology experts
- - Manager interview or Offer interview with a hiring manager
- Get ready to join the team!
- Not sure if you meet all the requirements? No problem. Let’s talk anyway and find out more!
- It takes 1 min of application to start the journey with us. Apply now!
Thành lập vào năm 1993, tận dụng lợi thế về chuyên môn kỹ thuật phần mềm, EPAM Systems, Inc. (NYSE: EPAM) đã vươn lên trở thành công ty phát triển sản phẩm, lập trình nền tảng kỹ thuật số và cơ quan thiết kế và lập trình sản phẩm hàng đầu thế giới. Thông qua 'DNA Lập trình' và chiến lược sáng tạo, khả năng tư vấn và thiết kế, EPAM hợp tác với khách hàng của mình để cung cấp các giải pháp tân tiến, biến những thách thức kinh doanh phức tạp thành kết quả kinh doanh thực tế. Các chi nhánh toàn cầu của EPAM phục vụ khách hàng tại hơn 35 quốc gia trên khắp Bắc Mỹ, Châu Âu, Châu Á và Úc.
Công ty TNHH Hệ thống EPAM (Việt Nam) mang đến một môi trường đa văn hóa, nơi các tài năng công nghệ của chúng tôi có thể chủ động phát triển các giải pháp đẳng cấp thế giới trực tiếp với các khách hàng quốc tế. Điều này được hỗ trợ bởi sự phát triển bền vững của nhân viên, thông qua chuyên môn nghiệp vụ và nâng cao kỹ năng mềm với các giải pháp học tập nội bộ và nguồn giáo dục bên ngoài.
Chính sách bảo hiểm
- Bảo hiểm chăm sóc sức khỏe cao cấp cho nhân viên và 2 người nhà của họ
Các hoạt động ngoại khóa
- Du lịch
- Teambuilding
- Party
- Thể thao
Lịch sử thành lập
- Năm 1993, Arkadiy Dobkin và Leo Lozner thành lập EPAM, một công ty dịch vụ kỹ thuật phần mềm toàn cầu, tại New Jersey , Hoa Kỳ và Minsk, Belarus .
- Năm 2004, EPAM mua lại Fathom Technology, một công ty dịch vụ phát triển phần mềm có trụ sở tại Budapest , Hungary, mở rộng các dịch vụ ra nước ngoài của mình ngoài Bắc Mỹ.
- Năm 2006, EPAM đã nhận được khoản đầu tư vốn cổ phần từ Siguler Guff để tài trợ cho các kế hoạch tăng trưởng cạnh tranh của mình.
- Vào cuối năm 2012, EPAM đã thực hiện hai vụ mua lại – Thoughtcorp, công ty đã mở rộng các dịch vụ của mình trong Agile, kinh doanh thông minh và di động, và Empathy Lab, công ty đã thiết lập một phương pháp tương tác kỹ thuật số tập trung vào trải nghiệm của khách hàng, thiết kế và Thương mại điện tử.
- Năm 2018, EPAM đã thực hiện hai vụ mua lại để mở rộng các dịch vụ của mình: Continuum (nay là EPAM Continuum) và TH_NK để bổ sung khả năng tư vấn và phát triển các phương pháp thiết kế dịch vụ và kỹ thuật số của mình.
- Vào tháng 8 năm 2021, EPAM đã mở rộng sự hiện diện của mình ở Châu Mỹ Latinh thông qua việc mua lại S4N có trụ sở tại Colombia, một công ty dịch vụ phát triển phần mềm chuyên thiết kế và phát triển các sản phẩm phần mềm hiện đại và nền tảng doanh nghiệp.
- Vào năm 2022, EPAM đã công bố một số thương vụ mua lại và đầu tư chiến lược, bao gồm phần lớn cổ phần trong công ty phần mềm Contino của Hoa Kỳ và một phần cổ phần thiểu số trong công ty phân tích dữ liệu dựa trên AI của Vương quốc Anh, Noodle.io.
Mission
“Sứ mệnh của EPAM là giúp các đối tác của mình tạo ra những trải nghiệm số đặc biệt cho khách hàng của họ.”
Review EPAM VIỆT NAM
Đồng nghiệp thân thiện, nghiệp vụ chuyên môn cao
Lương trả đúng với năng lực
Công ty có hệ thống web internal hiện đại, chuyên nghiệp
Mọi người cũng đã tìm kiếm
Công việc của Data Engineer là gì?
Data Engineer hay kỹ sư chuyên về dữ liệu thường làm các công việc như phân tích nguồn dữ liệu, tích hợp thông tin giữa các hệ thống nhất với nhau, chuyển đổi và đồng bộ các dữ liệu trên nhiều hệ thống riêng biệt. Các nguồn dữ liệu ở đây được biết đến như các phần mềm website trong hoạt động các lĩnh vực bán hàng, nhân sự, tài chính, kế toán,....Bên cạnh đó, những vị trí như Data science, Data Analyst cũng thường đảm nhận các công việc tương tự.
Mô tả công việc của vị trí Data Engineer
Phân tích, tổng hợp, lưu trữ dữ liệu
Data Engineer kết hợp cùng DBA tạo ra các vùng lưu trữ dữ liệu từ các nguồn hệ thống thích hợp và mang lại hiệu quả cao. Nhiệm vụ của kỹ sư dữ liệu là đưa các dữ liệu vào Database và File Sever bằng cách (FTP, drag and drop…) và lưu trữ bằng (.csv, xlsx, .dat, database).
Chuẩn hóa và chuyển đổi logic, tập trung nguồn dữ liệu
Các dữ liệu được Data Engineer lưu chuyển đến các nguồn lữu trữ khác nhau nhằm mục đích so sánh, thêm dữ liệu và dự phòng các dữ liệu cho nhiều trường hợp khác nhau. Kỹ sư dữ liệu tập trung nguồn dữ liệu đưa các thông tin về một nguồn lưu trữ chung với các mô hình chuyên biệt, dành cho việc khôi phục phân tích các dữ liệu cần thiết trong các tình huống dự phòng.
Phân tích và trích xuất dữ liệu
Data Engineer sẽ kết hợp cùng với DBA (Database Administration) để tạo các vùng lưu trữ dữ liệu, đồng thời đảm bảo các yếu tố về bảo mật riêng tư, tính hiệu quả. Bên cạnh đó sẽ theo dõi và kiểm tra các nguồn dữ liệu được đưa từ các Database.
Triển khai machine learning cho hệ thống dữ liệu
Các mô hình học máy được thiết kế bởi các Data Engineers. Các Data Engineer chịu trách nhiệm triển khai chúng vào môi trường sản xuất. Điều này đòi hỏi phải cung cấp cho mô hình dữ liệu được lưu trữ trong kho hoặc đến trực tiếp từ các nguồn, định cấu hình thuộc tính dữ liệu, quản lý tài nguyên máy tính, thiết lập công cụ giám sát, v.v.
Data Engineer có mức lương bao nhiêu?
Lương cơ bản
Lương bổ sung
228 - 387 triệu
/nămLộ trình sự nghiệp Data Engineer
Tìm hiểu cách trở thành Data Engineer, bạn cần có những kỹ năng và trình độ học vấn nào để thành công cũng như đạt được mức lương mong đợi ở mỗi bước trên con đường sự nghiệp của bạn.
Số năm kinh nghiệm
Điều kiện và Lộ trình trở thành một Data Engineer?
Yêu cầu tuyển dụng của Data Engineer
Để thực hiện tốt các nhiệm vụ được giao, Data Engineer cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan:
Yêu cầu bằng cấp và kiến thức chuyên môn
-
Bằng cấp và chuyên ngành: Yêu cầu ứng viên đang theo học hoặc mới tốt nghiệp bằng Đại học chuyên ngành liên quan như Khoa học Dữ liệu, Khoa học Máy tính, Kỹ thuật Máy tính, Toán học, Thống kê, hoặc các ngành tương đương.
-
Kiến thức về bảo mật dữ liệu: Bảo mật dữ liệu là một yêu cầu quan trọng. Data Engineers cần hiểu về các biện pháp bảo mật và kiến thức về quyền truy cập dữ liệu.
-
Kỹ năng xử lý dữ liệu: Khả năng xử lý và biến đổi dữ liệu là quan trọng. Data Engineers cần hiểu về các công cụ và framework xử lý dữ liệu như Apache Spark, Apache Flink, hoặc Apache Kafka.
Yêu cầu về kỹ năng
-
Kỹ năng lập trình: Yêu cầu đối với Data Engineer là cần biết cơ bản về SQL, Python, Oracle. Kỹ sư dữ liệu không yêu cầu phải biết sâu về lập trình, tính toán nhưng phải nắm rõ các khái niệm và giá trị đằng sau các công thức hiển thị ở màn hình.
-
Kỹ năng phân tích logic: Kỹ năng phân tích logic luôn cần thiết trong các công việc cần sự chính xác và có tính liên kết với nhau. Data Engineer phải biết cách phân tích và tìm ra được ý nghĩa của những con số cũng như dữ liệu khô khan. Dựa vào đó, công ty có thể nhìn nhận được vấn đề để tìm ra hướng giải quyết phù hợp.
-
Kỹ năng thiết kế và trình bày báo cáo: Sau khi hoàn thành các công việc phân tích, bạn sẽ thu thập dữ liệu và lập bảng báo cáo trình bày lên cấp trên. Việc thiết kế và trình bày báo cáo phải mang tính dễ hiểu, dễ đưa ra các nhận định so sánh. Để giúp công việc trở nên thuận lợi hơn bạn có thể tự học hỏi và xem thêm các công cụ hỗ trợ thiết kế báo cáo.
Yêu cầu khác
-
Kinh nghiệm: Yêu cầu các Data Engineer đã có 1 - 2 năm kinh nghiệm. Hiểu rõ về các mô hình dữ liệu, thuật toán, kỹ thuật chuyển đổi dữ liệu. Có kinh nghiệm liên quan đến các giải pháp BI và ETL (trích xuất, chuyển đổi, tải dữ liệu) liên quan đến kho dữ liệu, các công cụ phân tích. Sử dụng được những công cụ chuyên dụng như Hadoop, Kafka,…
Lộ trình thăng tiến của Data Engineer
Lộ trình thăng tiến của Data Engineer có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.
1. Intern Data Engineer
Mức lương: 2 - 4 triệu/ tháng
Kinh nghiệm làm việc: Dưới 1 năm
Intern Data Engineer là người được đào tạo, hướng dẫn đồng thời chịu trách nhiệm hỗ trợ các công việc thực tế của một Data Engineer thực thụ để bồi dưỡng thêm kinh nghiệm, nắm rõ được trách nhiệm ngành nghề của mình. Áp dụng nguyên tắc phần mềm, công nghệ vào phát triển, bảo trì, thiết kế, kiểm tra và đánh giá các phần mềm máy tính.
>> Đánh giá: Trong lĩnh vực khoa học dữ liệu, Intern Data Engineer là một trong những vị trí được đánh giá tương đối phức tạp và đòi hỏi nhiều kỹ năng. Theo đó, vai trò của Intern Data Engineer đó là thực hiện các phân tích, đánh giá dữ liệu quan trọng cho các hoạt động của doanh nghiệp. Là công việc thu hút rất nhiều ứng viên trẻ mới ra trường bởi mức lương hấp dẫn và lộ trình phát triển rộng mở.
>> Xem thêm: Việc làm Thực tập sinh Data Engineer cho người mới
2. Data Engineer
Mức lương: 18 - 30 triệu/ tháng
Kinh nghiệm làm việcb 1 - 4 năm
Data Engineer thường làm các công việc như phân tích nguồn dữ liệu, tích hợp thông tin giữa các hệ thống nhất với nhau, chuyển đổi và đồng bộ các dữ liệu trên nhiều hệ thống riêng biệt. Các nguồn dữ liệu ở đây được biết đến như các phần mềm website trong hoạt động các lĩnh vực bán hàng, nhân sự, tài chính, kế toán,....
>> Đánh giá: Doanh nghiệp hoạt động kinh doanh hiện nay không chỉ quan tấm đến vấn đề quản lý nguồn dữ liệu mà họ còn có mong muốn tìm ra hướng giải quyết mở rộng tài nguyên để lưu trữ và kiểm soát nguồn dữ liệu. Để làm được như vậy họ cần có Data Engineer - người sẽ giúp họ thực hiện các giải pháp trên. Chính vì thế đây là ngành nghề có xu hướng tuyển dụng tăng trong các năm tiếp theo.
>> Xem thêm: Việc làm Data Engineer đang tuyển dụng
5 bước giúp Data Engineer thăng tiến nhanh trong trong công việc
Trang bị các chứng chỉ liên quan
Bạn có thể ghi danh vào những khóa học dài hạn hoặc những chứng chỉ online để vừa củng cố chuyên môn, vừa được chứng nhận có kiến thức về một lĩnh vực. Các Data Engineer tiềm năng có thể tìm hiểu việc có được các chứng chỉ chuyên môn như AWS Certified Data Analytics, Microsoft Certified: Azure Data Engineer Associate, hoặc các khóa học online uy tín cũng sẽ giúp bạn khẳng định năng lực và tăng khả năng cạnh tranh trên thị trường lao động.
Phát triển kỹ năng thống kê
Đây cũng là kiến thức cơ bản bạn cần nắm. Bạn nên bắt đầu nghiêm túc với các môn học xác suất thống kê, thống kê mô tả để nắm được các khái niệm cơ bản như nghịch lý Simpson, phân tích dữ liệu khám phá (EDA), liên kết các biến,… Đó sẽ là tiền đề vững chắc để bạn phát triển hơn trong nghề.
Có khả năng thu thập, xử lý và phân tích dữ liệu
Dữ liệu ngày nay vô cùng đa dạng và đến từ nhiều nguồn khác nhau (như bảng khảo sát, thống kê mạng xã hội, điện thoại di động,...). Từ đống dữ liệu “lộn xộn” đó bạn phải xử lý về cùng một ngôn ngữ mà máy đọc được. Vì vậy bạn cần chú trọng đến các kỹ năng này để làm việc hiệu quả, năng suất, tiết kiệm thời gian hơn.
Đầu óc tư duy nhạy bén
Với một Data Engineer cần phải tư duy hơn người bình thường. Bạn là người làm việc với dữ liệu và sử dụng bộ não để nhìn nhận từ nhiều góc độ để tìm ra giải pháp hiệu quả nhất. Do đó, nếu bạn không có cái nhìn đa chiều thì rất khó để giải quyết được vấn đề.
Hiểu rõ thuật toán Machine Learning
Đây có thể cho là kỹ năng cần thiết nhất đối với một Data Engineer. Hiểu đơn giản, Machine Learning là “dạy” máy tính học các dữ liệu lịch sử, dữ liệu có sẵn để đưa ra được các quyết định tự trị một cách thông minh. Hiểu rõ cơ chế hoạt động này sẽ giúp Data Engineer tiết kiệm được nhiều thời gian trong việc khám phá, dự báo từ dữ liệu.
Đọc thêm: