Ready to leverage your mastery of LLMs to drive productivity? At Trilogy, we're opening doors to an exceptional tech career, welcoming those who've honed their AI skills to elevate their expertise in a dynamic environment. We're offering a rare chance where your primary focus will be to further expand your proficiency in LLMs.
In an industry often filled with more buzzwords than tangible progress, Trilogy stands out as a hub of genuine innovation. Our focus is on practical, real-world applications aimed at reshaping industries. Imagine creating AI-driven tools that streamline workflow, automate tasks, or enhance decision-making processes, all to significantly boost productivity.
Your mandate? Harnessing LLMs to revolutionize how businesses operate, improving efficiency and effectiveness. You'll be architecting solutions that integrate AI seamlessly, making intricate processes more accessible and refining workflows for maximum output. Here, you won't be lost in bureaucratic hurdles or pitching ideas into the void. Instead, you'll witness the direct impact of your efforts, as your work directly influences the evolution of productivity tools.
Ready to unleash your expertise and become a force of change? Let's explore if you're the catalyst we're seeking for this exciting opportunity!
What You Will Be Doing
- Designing and building high-quality AI automations to streamline processes, enhance productivity, and deliver robust, scalable solutions across diverse applications
- Experimenting with state-of-the-art AI tools like GPT-4 Vision and Amazon CodeWhisperer, integrating them into our developmental process to assess and enhance their utility
- Evaluating and optimizing the implementation of AI solutions across various infrastructures, including AWS, to ensure seamless performance and integration
- Traditional coding - our AI does the heavy lifting, freeing you to innovate and strategize
- Being stuck on repetitive tasks - no two problems are the same
Architecting and deploying sophisticated, fully-automated AI systems that require zero human intervention for a truly scalable impact
Basic Requirements
- Professional experience leveraging LLMs, such as ChatGPT, Bing, Bard, or Claude, to automate manual tasks and boost your company's productivity
- At least 3 years of professional work experience
- Proficiency in Python and API integration
- Proficiency in AWS
Hundreds of software businesses run on the Trilogy Business Platform. For three decades, Trilogy has been known for 3 things: Relentlessly seeking top talent, Innovating new technology, and incubating new businesses. Our technological innovation is spearheaded by a passion for simple customer-facing designs. Our incubation of new businesses ranges from entirely new moon-shot ideas to rearchitecting existing projects for today's modern cloud-based stack. Trilogy is a place where you can be surrounded with great people, be proud of doing great work, and grow your career by leaps and bounds.
There is so much to cover for this exciting role, and space here is limited. Hit the Apply button if you found this interesting and want to learn more. We look forward to meeting you!
Working with Crossover
This is a full-time (40 hours per week), long-term position. The position is immediately available and requires entering into an independent contractor agreement with Crossover. The compensation level for this role is $50 USD/hour, which equates to $100,000 USD/year assuming 40 hours per week and 50 weeks per year. The payment period is weekly. Consult www.crossover.com/help-and-faqs for more details on this topic.
What to expect next:
- You will receive an email with a link to start your self-paced, online job application.
- Our hiring platform will guide you through a series of online “screening” assessments to check for basic job fit, job-related skills, and finally a few real-world job-specific assignments.
- First, emails may take up to 15 minutes to send, refresh and check again.
- Second, check your spam and junk folders for an email from Crossover.com, mark as “Not Spam” since you will receive other emails as well.
- Third, we will send to whatever email account you indicated on the Apply form - by default, that is the email address you use as your LinkedIn username and it might be different than the one you have already checked.
- If all else fails, just reset your password by visiting https://www.crossover.com/auth/password-recovery if you already applied using LinkedIn EasyApply.
Mọi người cũng đã tìm kiếm
Công việc của Machine learning Engineerr là gì?
Machine Learning Engineer là một chuyên gia trong lĩnh vực công nghệ và khoa học máy tính, chuyên về việc phát triển và triển khai các hệ thống thông minh và các ứng dụng sử dụng trí tuệ nhân tạo. Các kỹ sư máy học sử dụng các thuật toán và phương pháp máy học để xây dựng các mô hình dự đoán, phân loại, và tối ưu hóa dữ liệu. Họ làm việc trên nhiều lĩnh vực, từ xử lý ngôn ngữ tự nhiên cho đến thị giác máy tính và tự động hóa. Bên cạnh đó, những vị trí như Kỹ sư sửa chữa máy, Nhân viên vận hành máy cũng thường đảm nhận các công việc tương tự.
Mô tả công việc của vị trí Machine Learning Engineer
Tạo và triển khai các mô hình máy học
Các kỹ sư máy học phát triển các mô hình bằng nhiều thuật toán và kỹ thuật khác nhau, chẳng hạn như học có giám sát, học tập không giám sát, và học kĩ càng, để dự đoán kết quả hoặc phát hiện các mẫu trong dữ liệu. Làm việc chặt chẽ với nhà khoa học dữ liệu, kỹ sư phần mềm và các bên liên quan khác để đảm bảo tích hợp liền mạch và triển khai hiệu quả các mô hình máy học trong các ứng dụng khác nhau.
Tiền xử lý dữ liệu và các tính năng kỹ thuật
Các kỹ sư xử lý trước dữ liệu thô để làm sạch, chuẩn hóa và chuyển đổi dữ liệu thành định dạng thích hợp cho các thuật toán máy học. Họ cũng tiến hành kỹ thuật tính năng để trích xuất thông tin có ý nghĩa từ dữ liệu.
Đánh giá và tối ưu hóa các mô hình
Các kỹ sư máy học đánh giá hiệu suất của các mô hình của họ bằng cách sử dụng các số liệu như độ chính xác, độ chính xác và khả năng thu hồi. Họ tối ưu hóa các mô hình bằng cách tinh chỉnh các siêu tham số, sử dụng các kỹ thuật như xác thực chéo và tìm kiếm dạng lưới.
Mở rộng quy mô và triển khai các mô hình máy học
Các kỹ sư đảm bảo rằng các mô hình có thể xử lý dữ liệu quy mô lớn và dễ dàng tích hợp vào môi trường sản xuất. Họ thường sử dụng nền tảng đám mây, công nghệ vùng chứa và API để triển khai và quản lý các mô hình.
Machine learning Engineerr có mức lương bao nhiêu?
Lương cơ bản
Lương bổ sung
130 - 325 triệu
/nămLộ trình sự nghiệp Machine learning Engineerr
Tìm hiểu cách trở thành Machine learning Engineerr, bạn cần có những kỹ năng và trình độ học vấn nào để thành công cũng như đạt được mức lương mong đợi ở mỗi bước trên con đường sự nghiệp của bạn.
Số năm kinh nghiệm
Điều kiện và Lộ trình trở thành một Machine learning Engineerr?
Yêu cầu tuyển dụng của Machine Learning Engineer
Để thực hiện tốt các nhiệm vụ được giao, Kỹ sư máy học cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan:
Yêu cầu bằng cấp và kiến thức chuyên môn
-
Kiến thức chuyên môn: Cử nhân về khoa học máy tính, khoa học dữ liệu hoặc một lĩnh vực liên quan. Một số vị trí có thể yêu cầu bằng thạc sĩ hoặc thậm chí bằng tiến sĩ, đặc biệt là trong các vai trò tập trung vào nghiên cứu. Có được kiến thức về các thư viện và khuôn khổ máy học, chẳng hạn như TensorFlow, PyTorch và Scikit-learning.
-
Kiến thức về Machine Learning: Ứng viên nên có kiến thức cơ bản về các khái niệm, các thuật toán và phương pháp trong Machine Learning. Điều này bao gồm hiểu biết về học máy giám sát và học máy không giám sát, cũng như khả năng đánh giá và cải tiến các mô hình Machine Learning.
-
Chứng chỉ chuyên ngành: Có các chứng chỉ nhà phát triển TensorFlow của Google, Cộng tác viên kỹ sư Azure AI của Microsoft hoặc Chuyên gia về máy học của AWS, để thể hiện kiến thức chuyên môn và cam kết của bạn đối với lĩnh vực này.
-
Kiến thức về dữ liệu: Kỹ sư máy học dự kiến sẽ có nhiều năng lực giống như Nhà khoa học dữ liệu, bao gồm lập mô hình dữ liệu, thành thạo kỹ thuật với các ngôn ngữ lập trình như Python và Java cũng như hiểu cách đánh giá các thuật toán, toán học và mô hình dự đoán.
Yêu cầu về kỹ năng
-
Kỹ năng phân tích vấn đề tốt: Các kỹ sư máy học thường phải đối mặt với những thách thức phức tạp đòi hỏi các giải pháp sáng tạo. Một kỹ sư thành công phải có kỹ năng phân tích và giải quyết vấn đề xuất sắc để xác định các mẫu trong dữ liệu, hiểu cấu trúc cơ bản của vấn đề và phát triển các chiến lược hiệu quả để giải quyết chúng.
-
Giao tiếp và hợp tác hiệu quả: Các kỹ sư máy học thường làm việc trong các nhóm đa ngành, cộng tác với các nhà khoa học dữ liệu. Kỹ năng cộng tác và giao tiếp mạnh mẽ là điều cần thiết để truyền đạt hiệu quả các ý tưởng và khái niệm phức tạp cho các thành viên trong nhóm với các cấp độ chuyên môn kỹ thuật khác nhau.
-
Chú ý đến chi tiết và chất lượng: Việc phát triển các mô hình học máy hiệu quả đòi hỏi độ chính xác cao và chú ý đến từng chi tiết. Một kỹ sư thành công phải kỹ lưỡng trong công việc của họ, đảm bảo rằng các mô hình của họ chính xác, hiệu quả và đáng tin cậy.
-
Kỹ năng làm việc với data: Dữ liệu dạng số đang ngày càng trở nên phổ biến hơn trong xã hội hiện đại. Do đó, kỹ năng làm việc với dữ liệu, đặc biệt là các dữ liệu khổng lồ (big data) rất quan trọng nếu bạn muốn phát triển trong nghề Kỹ sư máy học.
Yêu cầu khác
-
Kinh nghiệm với deep learning framework
Để tự giải quyết cho mình các vấn đề bằng Machine Learning, giờ là lúc bạn cần tới sức mạnh của Framework. Bản thân các ML framework cũng như framework trong các lĩnh vực khác, bản thân nó hỗ trợ rất nhiều công cụ, thư viện để làm việc nhanh chóng, thuận tiện và an toàn hơn.
-
Sử dụng thông thạo công cụ trong Machine learning
Kỹ sư máy học không chỉ phải có kiến thức về cách viết mã và phát triển bằng các ngôn ngữ lập trình như Python, Java và C ++, nhiều kỹ sư học máy cũng thấy hữu ích khi sử dụng thành thạo các công cụ và tài nguyên sau: TensorFlow, Spark và Hadoop, R Programming, Apache Kafka, Amazon Machine Learning,....
Lộ trình thăng tiến của Machine Learning Engineer
Lộ trình thăng tiến của Kỹ sư máy học có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.
1. Intern Machine Learning
Mức lương: 4 - 8 triệu/ tháng
Kinh nghiệm làm việc: Dưới 1 năm
Intern Machine Learning là một công việc thực tập trong lĩnh vực Học Máy, một phần quan trọng của Trí Tuệ Nhân Tạo (AI). Người làm Intern Machine Learning thường là sinh viên hoặc người mới bắt đầu trong lĩnh vực này, họ tham gia vào các dự án để học hỏi và áp dụng các thuật toán máy học để giải quyết các vấn đề thực tế.
>> Đánh giá: Công việc của một Intern Machine Learning yêu cầu khả năng học hỏi liên tục, bởi vì lĩnh vực này luôn thay đổi nhanh chóng. Interns cần phải tự học và nghiên cứu các tiến bộ mới trong Machine Learning để cải thiện kỹ năng của họ.
Đọc thêm: Việc làm Intern Machine Learning tuyển dụng
2. Kỹ sư máy học
Mức lương: 10 - 25 triệu/ tháng
Kinh nghiệm làm việc: 2 - 6 năm
Kỹ sư máy học là một chuyên gia trong lĩnh vực công nghệ và khoa học máy tính, chuyên về việc phát triển và triển khai các hệ thống thông minh và các ứng dụng sử dụng trí tuệ nhân tạo. Các kỹ sư máy học sử dụng các thuật toán và phương pháp máy học để xây dựng các mô hình dự đoán, phân loại, và tối ưu hóa dữ liệu. Họ làm việc trên nhiều lĩnh vực, từ xử lý ngôn ngữ tự nhiên cho đến thị giác máy tính và tự động hóa.
>> Đánh giá: Machine Learning là một lĩnh vực tương đối mới. Vẫn còn nhiều giải pháp, công cụ, thuật toán và ứng dụng đang chờ được tạo ra và khám phá. Tương tự như kỹ sư phần mềm, kỹ sư máy học về bản chất phải coi trọng việc học. Và điều cần thiết là sử dụng các khóa học, blog, hướng dẫn và podcast để luôn dẫn đầu trong một lĩnh vực đang thay đổi nhanh chóng.
Đọc thêm: Việc làm Kỹ sư máy học mới cập nhật
5 bước giúp Machine Learning Engineer thăng tiến nhanh trong trong công việc
Tò mò và không ngừng học hỏi
Lĩnh vực học máy không ngừng phát triển với các kỹ thuật, công cụ mới và các phương pháp hay nhất thường xuyên xuất hiện. Một kỹ sư máy học thành công phải sở hữu trí tò mò bẩm sinh và mong muốn học hỏi không ngừng. Điều này bao gồm cập nhật những nghiên cứu mới nhất, tham dự các hội nghị và hội thảo, đồng thời tham gia vào các cộng đồng trực tuyến nơi họ có thể học hỏi và cộng tác với các chuyên gia khác.
Rèn luyện khả năng thích ứng linh hoạt
Các dự án học máy thường yêu cầu các kỹ sư thích ứng với các công nghệ, công cụ và phương pháp mới. Một kỹ sư thành công phải có khả năng thích ứng và linh hoạt, sẵn sàng học các kỹ năng mới và xoay chuyển cách tiếp cận của họ khi cần thiết. Sự linh hoạt này cho phép họ luôn dẫn đầu và duy trì sự phù hợp trong thế giới AI có nhịp độ nhanh.
Chuyên môn lập trình và kỹ thuật phần mềm
Các kỹ sư máy học phải thành thạo các ngôn ngữ lập trình như Python, R hoặc Java, vì những ngôn ngữ này thường được sử dụng để phát triển các mô hình học máy. Ngoài ra, họ phải thành thạo các nguyên tắc công nghệ phần mềm, bao gồm kiểm soát phiên bản, thử nghiệm và tối ưu hóa mã. Kiến thức này cho phép họ tạo mã hiệu quả, có thể mở rộng và có thể bảo trì, có thể tích hợp liền mạch vào môi trường sản xuất.
Kết nối với các chuyên gia
Kết nối với các chuyên gia trong ngành bằng cách tham dự các sự kiện, tham gia cộng đồng trực tuyến và kết nối với đồng nghiệp trên các nền tảng như LinkedIn. Mạng có thể giúp bạn khám phá các cơ hội việc làm và học hỏi từ những người khác trong lĩnh vực này.
Tăng năng suất lao động
Tăng năng suất làm việc là yếu tố quan trọng giúp bạn thăng tiến trong sự nghiệp. Nếu bạn muốn lên một nhà lãnh đạo, tăng năng suất doanh nghiệp có thể giúp cải thiện kết quả kinh doanh và giúp doanh nghiệp đón đầu, dự báo những thăng trầm trong kinh doanh tốt hơn các doanh nghiệp khác. Dù bạn là ai, năng suất làm việc là vấn đề hàng đầu bạn cần quan tâm nếu muốn đạt được những mục tiêu dài hạn trong công việc và cuộc sống.
Đọc thêm: