Expired date: 31/01/2025
Team: Human Resource
We are seeking a dynamic Learning & Development Executive to join our HR team. This role will be responsible for coordinating and following up on HR initiatives, ensuring their timely progress and evaluating effectiveness. The position demands a highly organized individual with excellent communication skills and a strong ability to collaborate across departments.
- Main Responsibilities:
- Support the implementation and follow-up of various HR projects such as Employee Engagement Survey (EES), KPI tools, and other organizational initiatives.
- Collaborate with department heads to collect and consolidate data related to HR projects.
- Monitor progress, provide reminders, and summarize results of HR initiatives.
- Assist in proposing solutions based on data analysis and outcomes.
- Ensure effective documentation and reporting for HR projects.
- Assist in organizing and coordinating training programs aligned with organizational goals.
- Work closely with departments to identify training needs and gather post-training feedback.⑊
- Track and monitor training KPIs such as participation rate, effectiveness evaluation, and satisfaction levels.
- Support the management of the e-learning platform and ensure training materials are up-to-date.
- Assist in conducting or coordinating soft skills training sessions when necessary.
- Act as a key liaison for internal communication projects, events, ensuring alignment with HR and organizational goals.
- Assist in crafting and disseminating internal messages related to HR policies, updates, and initiatives.
- Support employee engagement through communication channels and activities.
- Requirements:
- Bachelor’s degree in human resources, Organizational Development, Education, or related field
- Experience with Training Needs Analysis and writing training material
- Excellent communication, collaboration, and interpersonal skills
- Strong Microsoft Office skills (PowerPoint, Word, Excel) and data skill
- Be able to use software to build E-learning lessons: Storyline, Ispring, Video scribe, Articulate 360…
- Knowing LMS, TMS
- Good English
- 3+ years of experience in the similar role
- Proven experience in designing and delivering training programs in a corporate setting
- Familiarity with talent management processes such as performance management, succession planning, and competency assessment
- Strong project management skills with the ability to manage multiple initiatives simultaneously
- Strategic thinker with a proactive approach to problem-solving
- Collaborative team player with a passion for developing others
- Adaptable and resilient in a fast-paced, evolving environment
- Commitment to continuous learning and professional development
Full Name *
Email Address *
Phone Number *
- More information
To attach your Resume, click here to upload from your Computer.
Security code *
Submit
Related jobs
- Talent Acquisition cum HRBP Lead
- Talent Acquisition Specialist
Được thành lập vào năm 2015, UrBox là một nền tảng Quà tặng API giúp các thương hiệu tích hợp các chương trình khách hàng thân thiết &; phần thưởng của họ với nhiều nhà cung cấp / người bán quà tặng thông qua kết nối API.
Người nhận có thể nhận quà tặng kỹ thuật số ngay lập tức trên điện thoại của họ để đổi tại các cửa hàng ngoại tuyến và trực tuyến. UrBox tự động hóa toàn bộ trải nghiệm tặng quà cho cả Thương hiệu, nhà cung cấp quà tặng / người bán và khách hàng.
Tích hợp API của chúng tôi kết nối các doanh nghiệp với mạng lưới các nhà cung cấp / thương nhân quà tặng trong nước và quốc tế ngày càng phát triển. Chúng tôi cũng kết nối Thương hiệu với khách hàng thông qua nhiều kênh kỹ thuật số, họ nhận được quà tặng ngay lập tức và lưu trữ trên ứng dụng của họ.
Tại thị trường địa phương, UrBox là nền tảng tặng quà kỹ thuật số duy nhất hoạt động như một mô hình SAAS, cung cấp API để tự động kết nối thương hiệu với các nhà cung cấp / người bán quà tặng. Trên cơ sở đó chúng tôi có 2 ngành nghề kinh doanh chính: Phần thưởng kỹ thuật số như một dịch vụ. Nền tảng đổi điểm khách hàng thân thiết
Chính sách bảo hiểm
- Chế độ Bảo hiểm đầy đủ (BHYT, BHXH, BHTN)
Các hoạt động ngoại khóa
- Hoạt động xã hội
- Dã ngoại, team building theo quý
- Chương trình giao lưu văn hóa của công ty,mở tiệc tùng, lễ hội
- Các cuộc thi năng khiếu như : Ca hát, múa, nhảy
- Tham gia các hoạt động, sự kiện, team building, du lịch nghỉ mát… do Công ty tổ chức;
Lịch sử thành lập
- Được thành lập năm 2015
Mission
- Trở thành nhà cung cấp và phân phối các sản phẩm với chất lượng tốt nhất và đem đến sự hài lòng cho khách hàng
Review Urbox
HR ko có trình độ, ko chuyên nghiệp (RV)
Nhân sự 2 miền xích mích thường xuyên vì mâu thuẫn cách làm việc (RV)
HR công ty có vấn đề (RV)
Mọi người cũng đã tìm kiếm
Công việc của Machine learning Engineerr là gì?
Machine Learning Engineer là một chuyên gia trong lĩnh vực công nghệ và khoa học máy tính, chuyên về việc phát triển và triển khai các hệ thống thông minh và các ứng dụng sử dụng trí tuệ nhân tạo. Các kỹ sư máy học sử dụng các thuật toán và phương pháp máy học để xây dựng các mô hình dự đoán, phân loại, và tối ưu hóa dữ liệu. Họ làm việc trên nhiều lĩnh vực, từ xử lý ngôn ngữ tự nhiên cho đến thị giác máy tính và tự động hóa. Bên cạnh đó, những vị trí như Kỹ sư sửa chữa máy, Nhân viên vận hành máy cũng thường đảm nhận các công việc tương tự.
Mô tả công việc của vị trí Machine Learning Engineer
Tạo và triển khai các mô hình máy học
Các kỹ sư máy học phát triển các mô hình bằng nhiều thuật toán và kỹ thuật khác nhau, chẳng hạn như học có giám sát, học tập không giám sát, và học kĩ càng, để dự đoán kết quả hoặc phát hiện các mẫu trong dữ liệu. Làm việc chặt chẽ với nhà khoa học dữ liệu, kỹ sư phần mềm và các bên liên quan khác để đảm bảo tích hợp liền mạch và triển khai hiệu quả các mô hình máy học trong các ứng dụng khác nhau.
Tiền xử lý dữ liệu và các tính năng kỹ thuật
Các kỹ sư xử lý trước dữ liệu thô để làm sạch, chuẩn hóa và chuyển đổi dữ liệu thành định dạng thích hợp cho các thuật toán máy học. Họ cũng tiến hành kỹ thuật tính năng để trích xuất thông tin có ý nghĩa từ dữ liệu.
Đánh giá và tối ưu hóa các mô hình
Các kỹ sư máy học đánh giá hiệu suất của các mô hình của họ bằng cách sử dụng các số liệu như độ chính xác, độ chính xác và khả năng thu hồi. Họ tối ưu hóa các mô hình bằng cách tinh chỉnh các siêu tham số, sử dụng các kỹ thuật như xác thực chéo và tìm kiếm dạng lưới.
Mở rộng quy mô và triển khai các mô hình máy học
Các kỹ sư đảm bảo rằng các mô hình có thể xử lý dữ liệu quy mô lớn và dễ dàng tích hợp vào môi trường sản xuất. Họ thường sử dụng nền tảng đám mây, công nghệ vùng chứa và API để triển khai và quản lý các mô hình.
Machine learning Engineerr có mức lương bao nhiêu?
Lương cơ bản
Lương bổ sung
130 - 325 triệu
/nămLộ trình sự nghiệp Machine learning Engineerr
Tìm hiểu cách trở thành Machine learning Engineerr, bạn cần có những kỹ năng và trình độ học vấn nào để thành công cũng như đạt được mức lương mong đợi ở mỗi bước trên con đường sự nghiệp của bạn.
Số năm kinh nghiệm
Điều kiện và Lộ trình trở thành một Machine learning Engineerr?
Yêu cầu tuyển dụng của Machine Learning Engineer
Để thực hiện tốt các nhiệm vụ được giao, Kỹ sư máy học cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan:
Yêu cầu bằng cấp và kiến thức chuyên môn
-
Kiến thức chuyên môn: Cử nhân về khoa học máy tính, khoa học dữ liệu hoặc một lĩnh vực liên quan. Một số vị trí có thể yêu cầu bằng thạc sĩ hoặc thậm chí bằng tiến sĩ, đặc biệt là trong các vai trò tập trung vào nghiên cứu. Có được kiến thức về các thư viện và khuôn khổ máy học, chẳng hạn như TensorFlow, PyTorch và Scikit-learning.
-
Kiến thức về Machine Learning: Ứng viên nên có kiến thức cơ bản về các khái niệm, các thuật toán và phương pháp trong Machine Learning. Điều này bao gồm hiểu biết về học máy giám sát và học máy không giám sát, cũng như khả năng đánh giá và cải tiến các mô hình Machine Learning.
-
Chứng chỉ chuyên ngành: Có các chứng chỉ nhà phát triển TensorFlow của Google, Cộng tác viên kỹ sư Azure AI của Microsoft hoặc Chuyên gia về máy học của AWS, để thể hiện kiến thức chuyên môn và cam kết của bạn đối với lĩnh vực này.
-
Kiến thức về dữ liệu: Kỹ sư máy học dự kiến sẽ có nhiều năng lực giống như Nhà khoa học dữ liệu, bao gồm lập mô hình dữ liệu, thành thạo kỹ thuật với các ngôn ngữ lập trình như Python và Java cũng như hiểu cách đánh giá các thuật toán, toán học và mô hình dự đoán.
Yêu cầu về kỹ năng
-
Kỹ năng phân tích vấn đề tốt: Các kỹ sư máy học thường phải đối mặt với những thách thức phức tạp đòi hỏi các giải pháp sáng tạo. Một kỹ sư thành công phải có kỹ năng phân tích và giải quyết vấn đề xuất sắc để xác định các mẫu trong dữ liệu, hiểu cấu trúc cơ bản của vấn đề và phát triển các chiến lược hiệu quả để giải quyết chúng.
-
Giao tiếp và hợp tác hiệu quả: Các kỹ sư máy học thường làm việc trong các nhóm đa ngành, cộng tác với các nhà khoa học dữ liệu. Kỹ năng cộng tác và giao tiếp mạnh mẽ là điều cần thiết để truyền đạt hiệu quả các ý tưởng và khái niệm phức tạp cho các thành viên trong nhóm với các cấp độ chuyên môn kỹ thuật khác nhau.
-
Chú ý đến chi tiết và chất lượng: Việc phát triển các mô hình học máy hiệu quả đòi hỏi độ chính xác cao và chú ý đến từng chi tiết. Một kỹ sư thành công phải kỹ lưỡng trong công việc của họ, đảm bảo rằng các mô hình của họ chính xác, hiệu quả và đáng tin cậy.
-
Kỹ năng làm việc với data: Dữ liệu dạng số đang ngày càng trở nên phổ biến hơn trong xã hội hiện đại. Do đó, kỹ năng làm việc với dữ liệu, đặc biệt là các dữ liệu khổng lồ (big data) rất quan trọng nếu bạn muốn phát triển trong nghề Kỹ sư máy học.
Yêu cầu khác
-
Kinh nghiệm với deep learning framework
Để tự giải quyết cho mình các vấn đề bằng Machine Learning, giờ là lúc bạn cần tới sức mạnh của Framework. Bản thân các ML framework cũng như framework trong các lĩnh vực khác, bản thân nó hỗ trợ rất nhiều công cụ, thư viện để làm việc nhanh chóng, thuận tiện và an toàn hơn.
-
Sử dụng thông thạo công cụ trong Machine learning
Kỹ sư máy học không chỉ phải có kiến thức về cách viết mã và phát triển bằng các ngôn ngữ lập trình như Python, Java và C ++, nhiều kỹ sư học máy cũng thấy hữu ích khi sử dụng thành thạo các công cụ và tài nguyên sau: TensorFlow, Spark và Hadoop, R Programming, Apache Kafka, Amazon Machine Learning,....
Lộ trình thăng tiến của Machine Learning Engineer
Lộ trình thăng tiến của Kỹ sư máy học có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.
1. Intern Machine Learning
Mức lương: 4 - 8 triệu/ tháng
Kinh nghiệm làm việc: Dưới 1 năm
Intern Machine Learning là một công việc thực tập trong lĩnh vực Học Máy, một phần quan trọng của Trí Tuệ Nhân Tạo (AI). Người làm Intern Machine Learning thường là sinh viên hoặc người mới bắt đầu trong lĩnh vực này, họ tham gia vào các dự án để học hỏi và áp dụng các thuật toán máy học để giải quyết các vấn đề thực tế.
>> Đánh giá: Công việc của một Intern Machine Learning yêu cầu khả năng học hỏi liên tục, bởi vì lĩnh vực này luôn thay đổi nhanh chóng. Interns cần phải tự học và nghiên cứu các tiến bộ mới trong Machine Learning để cải thiện kỹ năng của họ.
Đọc thêm: Việc làm Intern Machine Learning tuyển dụng
2. Kỹ sư máy học
Mức lương: 10 - 25 triệu/ tháng
Kinh nghiệm làm việc: 2 - 6 năm
Kỹ sư máy học là một chuyên gia trong lĩnh vực công nghệ và khoa học máy tính, chuyên về việc phát triển và triển khai các hệ thống thông minh và các ứng dụng sử dụng trí tuệ nhân tạo. Các kỹ sư máy học sử dụng các thuật toán và phương pháp máy học để xây dựng các mô hình dự đoán, phân loại, và tối ưu hóa dữ liệu. Họ làm việc trên nhiều lĩnh vực, từ xử lý ngôn ngữ tự nhiên cho đến thị giác máy tính và tự động hóa.
>> Đánh giá: Machine Learning là một lĩnh vực tương đối mới. Vẫn còn nhiều giải pháp, công cụ, thuật toán và ứng dụng đang chờ được tạo ra và khám phá. Tương tự như kỹ sư phần mềm, kỹ sư máy học về bản chất phải coi trọng việc học. Và điều cần thiết là sử dụng các khóa học, blog, hướng dẫn và podcast để luôn dẫn đầu trong một lĩnh vực đang thay đổi nhanh chóng.
Đọc thêm: Việc làm Kỹ sư máy học mới cập nhật
5 bước giúp Machine Learning Engineer thăng tiến nhanh trong trong công việc
Tò mò và không ngừng học hỏi
Lĩnh vực học máy không ngừng phát triển với các kỹ thuật, công cụ mới và các phương pháp hay nhất thường xuyên xuất hiện. Một kỹ sư máy học thành công phải sở hữu trí tò mò bẩm sinh và mong muốn học hỏi không ngừng. Điều này bao gồm cập nhật những nghiên cứu mới nhất, tham dự các hội nghị và hội thảo, đồng thời tham gia vào các cộng đồng trực tuyến nơi họ có thể học hỏi và cộng tác với các chuyên gia khác.
Rèn luyện khả năng thích ứng linh hoạt
Các dự án học máy thường yêu cầu các kỹ sư thích ứng với các công nghệ, công cụ và phương pháp mới. Một kỹ sư thành công phải có khả năng thích ứng và linh hoạt, sẵn sàng học các kỹ năng mới và xoay chuyển cách tiếp cận của họ khi cần thiết. Sự linh hoạt này cho phép họ luôn dẫn đầu và duy trì sự phù hợp trong thế giới AI có nhịp độ nhanh.
Chuyên môn lập trình và kỹ thuật phần mềm
Các kỹ sư máy học phải thành thạo các ngôn ngữ lập trình như Python, R hoặc Java, vì những ngôn ngữ này thường được sử dụng để phát triển các mô hình học máy. Ngoài ra, họ phải thành thạo các nguyên tắc công nghệ phần mềm, bao gồm kiểm soát phiên bản, thử nghiệm và tối ưu hóa mã. Kiến thức này cho phép họ tạo mã hiệu quả, có thể mở rộng và có thể bảo trì, có thể tích hợp liền mạch vào môi trường sản xuất.
Kết nối với các chuyên gia
Kết nối với các chuyên gia trong ngành bằng cách tham dự các sự kiện, tham gia cộng đồng trực tuyến và kết nối với đồng nghiệp trên các nền tảng như LinkedIn. Mạng có thể giúp bạn khám phá các cơ hội việc làm và học hỏi từ những người khác trong lĩnh vực này.
Tăng năng suất lao động
Tăng năng suất làm việc là yếu tố quan trọng giúp bạn thăng tiến trong sự nghiệp. Nếu bạn muốn lên một nhà lãnh đạo, tăng năng suất doanh nghiệp có thể giúp cải thiện kết quả kinh doanh và giúp doanh nghiệp đón đầu, dự báo những thăng trầm trong kinh doanh tốt hơn các doanh nghiệp khác. Dù bạn là ai, năng suất làm việc là vấn đề hàng đầu bạn cần quan tâm nếu muốn đạt được những mục tiêu dài hạn trong công việc và cuộc sống.
Đọc thêm: