Mô tả công việc
- Tham gia triển khai dự án Data Lake: migrate dữ liệu từ hệ thống DWH cũ sang hệ thống Data Lake của AWS (bao gồm cả dữ liệu gần thời gian thực (near real-time) và dữ liệu batch (t-1))
- Tiếp tục thiết kế, bảo trì Data Lake: tham gia xây dựng và tối ưu Data Marts cho các đơn vị F88.
- Tham gia xây dựng luồng ETL và quản lý luồng ETL sử dụng tool quản lý ETL (Airflow).
- Làm việc với team Phân tích và Khoa học Dữ liệu để làm giàu dữ liệu cho Data Lake, Data Mart và hoàn thiện các yêu cầu dữ liệu từ các Đơn vị của F88.
- Cùng với team Khoa học dữ liệu xây dựng các luồng dữ liệu cho các sản phẩm về dữ liệu để vận hành tự động theo luồng nghiệp vụ của F88.
- Thực hiện việc tài liệu hóa các mapping về dữ liệu Data Lake, MetaData của các hệ thống tác nghiệp được đẩy lên Data Lake đảm bảo sự ổn định, minh bạch của dữ liệu và các logic nghiệp vụ.
- Tham gia vào các hoạt động làm sạch dữ liệu trên hệ thống Data Lake, nghiệp vụ F88.
- Tham gia vào hoạt động vận hành, báo cáo về chất lượng dữ liệu theo mô hình Data Steward Models và Khung Quản trị Dữ liệu.
Yêu cầu công việc
- Tốt nghiệp Đại học các chuyên ngành về Công nghệ thông tin, Dữ liệu…
- Có chứng chỉ liên quan đến các chuyên ngành như Khoa học Máy tính (Computer Science), Kỹ sư phần mềm (Software Engineering) hoặc các ngành về Khoa học Dữ liệu (Data Science), Quản lý Hệ thống Thông tin (Managing Information Systems) là một lợi thế
- Có Mindset data-driven và sự tỷ mẩn (detail-oriented) của người xây dựng hạ tầng dữ liệu
- Có từ 01 năm kinh nghiệm với việc xây dựng luồng ETL trên các hệ thống lưu trữ dữ liệu có cấu trúc (Relations Databases) và thiết kế Data Marts, DataWarehouse hoặc Data Lake..
- Có kinh nghiệm trong việc khởi tạo và vận hành hạ tầng về BI và nắm rõ các vấn đề về bảo mật, phân quyền cho hạ tầng BI là một lợi thế
- Có kiến thức về hệ thống dữ liệu có cấu trúc như: MSSQL, PostgreSQL, MySQL/Oracle
- Có kiến thứcvới các nền tảng Cloud như: AWS, Google Cloud, Azure…
- Thuần thục với các ngôn ngữ Python hoặc Java và sử dụng thành thạo Bash script
- Có kinh nghiệm với các công cụ quản lý luồng ETL chung như: Airflow, Luigi hoặc các công cụ tương tự là một lợi thế
- Có kinh nghiệm với các công cụ về stream dữ liệu thời gian thực như: Kafka, Spark, Storm là một lợi thế
Quyền lợi được hưởng
- Chế độ bảo hiểm
- Du Lịch
- Phụ cấp
- Chế độ thưởng
- Chăm sóc sức khỏe
- Đào tạo
- Tăng lương
- Phụ cấp thâm niên
- Nghỉ phép năm
CÔNG TY CỔ PHẦN KINH DOANH F88 thành lập năm 2013, với mong muốn thay đổi cách tiếp cận tài chính, giúp người dân có cuộc sống tốt đẹp hơn bằng việc cung cấp dịch vụ nhanh chóng - dễ dàng - minh bạch.
Coi Khách hàng là trọng tâm, F88 luôn đặt sự hài lòng của Khách hàng là ưu tiên số 1 trong mọi suy nghĩ và hành động mang tới dịch vụ tiện ích tài chính tốt nhất và đáp ứng mọi nhu cầu tài chính của các đối tượng khách hàng.
F88 không chỉ cung cấp dịch vụ cho vay siêu nhanh bằng ô tô/đăng ký ô tô, xe máy/đăng ký xe máy, điện thoại, laptop... mà còn cung cấp nhiều dịch vụ tiện ích tài chính khác như Bảo hiểm, chuyển tiền, chi hộ, thu hộ tiền điện, nước, internet…
Với lợi thế nguồn vốn lớn từ sự đầu tư của các quỹ đầu tư tài chính uy tín trên thế giới như Mekong Capital và Granite Oak, F88 là địa chỉ tin cậy được hầu hết các đối tượng khách hàng lựa chọn để tiếp cận tài chính siêu nhanh - siêu dễ - siêu khủng khi có nhu cầu vay tiền thông qua hệ thống phòng giao dịch trên toàn quốc.
Hướng tới năm 2023, F88 là tập đoàn cung cấp dịch vụ tài chính số 1 Việt Nam, sở hữu 1000 phòng giao dịch trên 63 tỉnh thành phố lớn trên toàn quốc.
Chính sách bảo hiểm
- BHXH + chế độ bảo hiểm sức khỏe đặc biệt dành cho nhân viên (F88 Care)
Các hoạt động ngoại khóa
- Cơ hội tham gia gắn kết với tập thể thông qua các hoạt động văn hóa sôi động: Teambuilding, Tất niên, 8/3, 20/10, Giáng sinh…
Lịch sử thành lập
- Ngày hoạt động: 30/06/2016
Mission
- Từ những ngày đầu F88 luôn định hướng "Con người là trọng tâm" trong sự phát triển của tổ chức, nên mọi hoạt động của F88 đều hướng đến từng thành viên cũng như mong muốn mang đến chất lượng dịch vụ tốt nhất cho mỗi khách hàng. "Làm sao để tất cả các thành viên sống trong tổ chức F88 luôn có được môi trường làm việc hạnh phúc nhất" là định hướng mà chúng ta xây dựng.
Review KINH DOANH F88
Nơi làm việc tuyệt vời, đồng nghiệp thân thiện, quản lý tốt. Chế độ đãi ngộ tốt.
Đồng nghiệp giỏi chuyên môn. Môi trường làm việc thoải mái. Công nghệ mới và phúc lợi tốt.
Môi trường làm việc thoải mái.Quản lý thân thiện.
Mọi người cũng đã tìm kiếm
Công việc của Data Engineer là gì?
Data Engineer hay kỹ sư chuyên về dữ liệu thường làm các công việc như phân tích nguồn dữ liệu, tích hợp thông tin giữa các hệ thống nhất với nhau, chuyển đổi và đồng bộ các dữ liệu trên nhiều hệ thống riêng biệt. Các nguồn dữ liệu ở đây được biết đến như các phần mềm website trong hoạt động các lĩnh vực bán hàng, nhân sự, tài chính, kế toán,....Bên cạnh đó, những vị trí như Data science, Data Analyst cũng thường đảm nhận các công việc tương tự.
Mô tả công việc của vị trí Data Engineer
Phân tích, tổng hợp, lưu trữ dữ liệu
Data Engineer kết hợp cùng DBA tạo ra các vùng lưu trữ dữ liệu từ các nguồn hệ thống thích hợp và mang lại hiệu quả cao. Nhiệm vụ của kỹ sư dữ liệu là đưa các dữ liệu vào Database và File Sever bằng cách (FTP, drag and drop…) và lưu trữ bằng (.csv, xlsx, .dat, database).
Chuẩn hóa và chuyển đổi logic, tập trung nguồn dữ liệu
Các dữ liệu được Data Engineer lưu chuyển đến các nguồn lữu trữ khác nhau nhằm mục đích so sánh, thêm dữ liệu và dự phòng các dữ liệu cho nhiều trường hợp khác nhau. Kỹ sư dữ liệu tập trung nguồn dữ liệu đưa các thông tin về một nguồn lưu trữ chung với các mô hình chuyên biệt, dành cho việc khôi phục phân tích các dữ liệu cần thiết trong các tình huống dự phòng.
Phân tích và trích xuất dữ liệu
Data Engineer sẽ kết hợp cùng với DBA (Database Administration) để tạo các vùng lưu trữ dữ liệu, đồng thời đảm bảo các yếu tố về bảo mật riêng tư, tính hiệu quả. Bên cạnh đó sẽ theo dõi và kiểm tra các nguồn dữ liệu được đưa từ các Database.
Triển khai machine learning cho hệ thống dữ liệu
Các mô hình học máy được thiết kế bởi các Data Engineers. Các Data Engineer chịu trách nhiệm triển khai chúng vào môi trường sản xuất. Điều này đòi hỏi phải cung cấp cho mô hình dữ liệu được lưu trữ trong kho hoặc đến trực tiếp từ các nguồn, định cấu hình thuộc tính dữ liệu, quản lý tài nguyên máy tính, thiết lập công cụ giám sát, v.v.
Data Engineer có mức lương bao nhiêu?
Lương cơ bản
Lương bổ sung
228 - 387 triệu
/nămLộ trình sự nghiệp Data Engineer
Tìm hiểu cách trở thành Data Engineer, bạn cần có những kỹ năng và trình độ học vấn nào để thành công cũng như đạt được mức lương mong đợi ở mỗi bước trên con đường sự nghiệp của bạn.
Số năm kinh nghiệm
Điều kiện và Lộ trình trở thành một Data Engineer?
Yêu cầu tuyển dụng của Data Engineer
Để thực hiện tốt các nhiệm vụ được giao, Data Engineer cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan:
Yêu cầu bằng cấp và kiến thức chuyên môn
-
Bằng cấp và chuyên ngành: Yêu cầu ứng viên đang theo học hoặc mới tốt nghiệp bằng Đại học chuyên ngành liên quan như Khoa học Dữ liệu, Khoa học Máy tính, Kỹ thuật Máy tính, Toán học, Thống kê, hoặc các ngành tương đương.
-
Kiến thức về bảo mật dữ liệu: Bảo mật dữ liệu là một yêu cầu quan trọng. Data Engineers cần hiểu về các biện pháp bảo mật và kiến thức về quyền truy cập dữ liệu.
-
Kỹ năng xử lý dữ liệu: Khả năng xử lý và biến đổi dữ liệu là quan trọng. Data Engineers cần hiểu về các công cụ và framework xử lý dữ liệu như Apache Spark, Apache Flink, hoặc Apache Kafka.
Yêu cầu về kỹ năng
-
Kỹ năng lập trình: Yêu cầu đối với Data Engineer là cần biết cơ bản về SQL, Python, Oracle. Kỹ sư dữ liệu không yêu cầu phải biết sâu về lập trình, tính toán nhưng phải nắm rõ các khái niệm và giá trị đằng sau các công thức hiển thị ở màn hình.
-
Kỹ năng phân tích logic: Kỹ năng phân tích logic luôn cần thiết trong các công việc cần sự chính xác và có tính liên kết với nhau. Data Engineer phải biết cách phân tích và tìm ra được ý nghĩa của những con số cũng như dữ liệu khô khan. Dựa vào đó, công ty có thể nhìn nhận được vấn đề để tìm ra hướng giải quyết phù hợp.
-
Kỹ năng thiết kế và trình bày báo cáo: Sau khi hoàn thành các công việc phân tích, bạn sẽ thu thập dữ liệu và lập bảng báo cáo trình bày lên cấp trên. Việc thiết kế và trình bày báo cáo phải mang tính dễ hiểu, dễ đưa ra các nhận định so sánh. Để giúp công việc trở nên thuận lợi hơn bạn có thể tự học hỏi và xem thêm các công cụ hỗ trợ thiết kế báo cáo.
Yêu cầu khác
-
Kinh nghiệm: Yêu cầu các Data Engineer đã có 1 - 2 năm kinh nghiệm. Hiểu rõ về các mô hình dữ liệu, thuật toán, kỹ thuật chuyển đổi dữ liệu. Có kinh nghiệm liên quan đến các giải pháp BI và ETL (trích xuất, chuyển đổi, tải dữ liệu) liên quan đến kho dữ liệu, các công cụ phân tích. Sử dụng được những công cụ chuyên dụng như Hadoop, Kafka,…
Lộ trình thăng tiến của Data Engineer
Lộ trình thăng tiến của Data Engineer có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.
1. Intern Data Engineer
Mức lương: 2 - 4 triệu/ tháng
Kinh nghiệm làm việc: Dưới 1 năm
Intern Data Engineer là người được đào tạo, hướng dẫn đồng thời chịu trách nhiệm hỗ trợ các công việc thực tế của một Data Engineer thực thụ để bồi dưỡng thêm kinh nghiệm, nắm rõ được trách nhiệm ngành nghề của mình. Áp dụng nguyên tắc phần mềm, công nghệ vào phát triển, bảo trì, thiết kế, kiểm tra và đánh giá các phần mềm máy tính.
>> Đánh giá: Trong lĩnh vực khoa học dữ liệu, Intern Data Engineer là một trong những vị trí được đánh giá tương đối phức tạp và đòi hỏi nhiều kỹ năng. Theo đó, vai trò của Intern Data Engineer đó là thực hiện các phân tích, đánh giá dữ liệu quan trọng cho các hoạt động của doanh nghiệp. Là công việc thu hút rất nhiều ứng viên trẻ mới ra trường bởi mức lương hấp dẫn và lộ trình phát triển rộng mở.
>> Xem thêm: Việc làm Thực tập sinh Data Engineer cho người mới
2. Data Engineer
Mức lương: 18 - 30 triệu/ tháng
Kinh nghiệm làm việcb 1 - 4 năm
Data Engineer thường làm các công việc như phân tích nguồn dữ liệu, tích hợp thông tin giữa các hệ thống nhất với nhau, chuyển đổi và đồng bộ các dữ liệu trên nhiều hệ thống riêng biệt. Các nguồn dữ liệu ở đây được biết đến như các phần mềm website trong hoạt động các lĩnh vực bán hàng, nhân sự, tài chính, kế toán,....
>> Đánh giá: Doanh nghiệp hoạt động kinh doanh hiện nay không chỉ quan tấm đến vấn đề quản lý nguồn dữ liệu mà họ còn có mong muốn tìm ra hướng giải quyết mở rộng tài nguyên để lưu trữ và kiểm soát nguồn dữ liệu. Để làm được như vậy họ cần có Data Engineer - người sẽ giúp họ thực hiện các giải pháp trên. Chính vì thế đây là ngành nghề có xu hướng tuyển dụng tăng trong các năm tiếp theo.
>> Xem thêm: Việc làm Data Engineer đang tuyển dụng
5 bước giúp Data Engineer thăng tiến nhanh trong trong công việc
Trang bị các chứng chỉ liên quan
Bạn có thể ghi danh vào những khóa học dài hạn hoặc những chứng chỉ online để vừa củng cố chuyên môn, vừa được chứng nhận có kiến thức về một lĩnh vực. Các Data Engineer tiềm năng có thể tìm hiểu việc có được các chứng chỉ chuyên môn như AWS Certified Data Analytics, Microsoft Certified: Azure Data Engineer Associate, hoặc các khóa học online uy tín cũng sẽ giúp bạn khẳng định năng lực và tăng khả năng cạnh tranh trên thị trường lao động.
Phát triển kỹ năng thống kê
Đây cũng là kiến thức cơ bản bạn cần nắm. Bạn nên bắt đầu nghiêm túc với các môn học xác suất thống kê, thống kê mô tả để nắm được các khái niệm cơ bản như nghịch lý Simpson, phân tích dữ liệu khám phá (EDA), liên kết các biến,… Đó sẽ là tiền đề vững chắc để bạn phát triển hơn trong nghề.
Có khả năng thu thập, xử lý và phân tích dữ liệu
Dữ liệu ngày nay vô cùng đa dạng và đến từ nhiều nguồn khác nhau (như bảng khảo sát, thống kê mạng xã hội, điện thoại di động,...). Từ đống dữ liệu “lộn xộn” đó bạn phải xử lý về cùng một ngôn ngữ mà máy đọc được. Vì vậy bạn cần chú trọng đến các kỹ năng này để làm việc hiệu quả, năng suất, tiết kiệm thời gian hơn.
Đầu óc tư duy nhạy bén
Với một Data Engineer cần phải tư duy hơn người bình thường. Bạn là người làm việc với dữ liệu và sử dụng bộ não để nhìn nhận từ nhiều góc độ để tìm ra giải pháp hiệu quả nhất. Do đó, nếu bạn không có cái nhìn đa chiều thì rất khó để giải quyết được vấn đề.
Hiểu rõ thuật toán Machine Learning
Đây có thể cho là kỹ năng cần thiết nhất đối với một Data Engineer. Hiểu đơn giản, Machine Learning là “dạy” máy tính học các dữ liệu lịch sử, dữ liệu có sẵn để đưa ra được các quyết định tự trị một cách thông minh. Hiểu rõ cơ chế hoạt động này sẽ giúp Data Engineer tiết kiệm được nhiều thời gian trong việc khám phá, dự báo từ dữ liệu.
Đọc thêm: