WorldQuant is built on a culture that pairs academic sensibility with accountability for results. Employees are encouraged to think openly about problems, balancing intellectualism and practicality. Excellent ideas come from anyone, anywhere. Employees are encouraged to challenge conventional thinking and possess an attitude of continuous improvement.
Our goal is to hire the best and the brightest. We value intellectual horsepower first and foremost, and people who demonstrate an outstanding talent. There is no roadmap to future success, so we need people who can help us build it.
Technologists at WorldQuant research, design, code, test and deploy firmwide platforms and tooling while working collaboratively with researchers and portfolio managers. Our environment is relaxed yet intellectually driven. We seek people who think in code and are motivated by being around like-minded people.
Job Responsibilities Include, But Not Limited To The Followings
- Transforming a wide range of structured and unstructured data into standardized outputs for quantitative analysis and financial engineering.
- Overseeing the integration of new technologies and initiatives into data standards and structures
- Enhancing data quality & integrity by developing validation tools to measure the effectiveness of data enrichment.
- Assessing system performance and making recommendations for software, and data storage improvements
- Developing the utility tools that can further automate the software development, testing and deployment workflow.
- Strong academic background – minimum of a bachelor’s degree in a technical or quantitative field.
- Demonstrated ability to implement data engineering pipelines and real-time applications in C++ (python is a plus).
- 2+ years of relevant experience as a Data Engineer or similar roles.
- Proficiency with C++ based tools like STL, object oriented programming in C++ is a must.
- Experience with Linux/Unix shell and Git is a must.
- Proficiency with python based tools like Jupyter notebook, coding standards like pep8 is a plus.
- Good knowledge of data structures and algorithms is mandatory.
- Good command of English. Proactive demeanor and strong communication skills within a global team environment is a plus.
- Excellent software development skills: ability to convert rough overall use-cases to a working codebase.
- Motivated by a deep curiosity and passion to learn is a plus.
- Competitive and attractive compensation package with clear career road-map – where you feel challenged everyday
- We offer a strong culture of learning and development: training courses, library, speakers, share and learn events
- Learn from who sits next to you! Working in WQ you are surrounded by smart and talented people
- Employee resources groups with strong diversity and inclusion culture
- Premium Health Insurance and Employee Assistance Program
- Generous time-off policy, re-creation sabbatical leave (based on tenure), Trade Union benefits for staff and family
- Team building activities every month: Local engagement events, monthly team lunch – Employee clubs: football, ping-pong, badminton, yoga, running, PS5, movies, etc.
- Annual company trip and occasional global conferences – opportunity to travel and connect with our global teams
- Happy-hour with tea break, snacks and meals every day in the office!
Copyright © 2024 WorldQuant, LLC. All Rights Reserved.
WorldQuant is an equal opportunity employer and does not discriminate in hiring on the basis of race, color, creed, religion, sex, sexual orientation or preference, age, marital status, citizenship, national origin, disability, military status, genetic predisposition or carrier status, or any other protected characteristic as established by applicable law.
WorldQuant phát triển và triển khai các chiến lược tài chính có hệ thống trên nhiều loại tài sản và thị trường toàn cầu. Chúng tôi tìm cách tạo ra các tín hiệu dự đoán (alpha) chất lượng cao thông qua nền tảng nghiên cứu độc quyền của mình để sử dụng các chiến lược tài chính tập trung vào việc khai thác sự kém hiệu quả của thị trường. Các nhóm của chúng tôi cộng tác làm việc để thúc đẩy việc tạo ra các bảng chữ cái và chiến lược tài chính - nền tảng của nền tảng đầu tư toàn cầu, cân bằng.
Các nhà công nghệ tại WorldQuant nghiên cứu, thiết kế, viết mã, thử nghiệm và triển khai các dự án trong khi cộng tác làm việc với các nhà nghiên cứu và nhà quản lý danh mục đầu tư. Môi trường của chúng tôi thoải mái nhưng vẫn được thúc đẩy về mặt trí tuệ. Các nhóm của chúng tôi tinh gọn và linh hoạt, có nghĩa là tạo mẫu sản phẩm nhanh chóng và nhận được phản hồi ngay lập tức của người dùng. Chúng tôi tìm kiếm những người có tư duy bằng mã, khao khát giải quyết những thách thức khoa học máy tính chưa được khám phá và được thúc đẩy bởi việc ở cạnh những người cùng chí hướng. Trên thực tế, trong số 600 nhân viên trên toàn cầu, có khoảng 500 người viết mã mỗi ngày.
Review WorldQuant
Nhân viên thân thiện. Môi trường nhỏ, yên tĩnh (GL)
Nơi tuyệt vời để làm việc và phát triển chuyên môn (GL)
Nơi này không cung cấp trải nghiệm học tập tốt. Có khoảng cách giao tiếp với ban quản lý. (GL)
Mọi người cũng đã tìm kiếm
Công việc của Data Engineer là gì?
Data Engineer hay kỹ sư chuyên về dữ liệu thường làm các công việc như phân tích nguồn dữ liệu, tích hợp thông tin giữa các hệ thống nhất với nhau, chuyển đổi và đồng bộ các dữ liệu trên nhiều hệ thống riêng biệt. Các nguồn dữ liệu ở đây được biết đến như các phần mềm website trong hoạt động các lĩnh vực bán hàng, nhân sự, tài chính, kế toán,....Bên cạnh đó, những vị trí như Data science, Data Analyst cũng thường đảm nhận các công việc tương tự.
Mô tả công việc của vị trí Data Engineer
Phân tích, tổng hợp, lưu trữ dữ liệu
Data Engineer kết hợp cùng DBA tạo ra các vùng lưu trữ dữ liệu từ các nguồn hệ thống thích hợp và mang lại hiệu quả cao. Nhiệm vụ của kỹ sư dữ liệu là đưa các dữ liệu vào Database và File Sever bằng cách (FTP, drag and drop…) và lưu trữ bằng (.csv, xlsx, .dat, database).
Chuẩn hóa và chuyển đổi logic, tập trung nguồn dữ liệu
Các dữ liệu được Data Engineer lưu chuyển đến các nguồn lữu trữ khác nhau nhằm mục đích so sánh, thêm dữ liệu và dự phòng các dữ liệu cho nhiều trường hợp khác nhau. Kỹ sư dữ liệu tập trung nguồn dữ liệu đưa các thông tin về một nguồn lưu trữ chung với các mô hình chuyên biệt, dành cho việc khôi phục phân tích các dữ liệu cần thiết trong các tình huống dự phòng.
Phân tích và trích xuất dữ liệu
Data Engineer sẽ kết hợp cùng với DBA (Database Administration) để tạo các vùng lưu trữ dữ liệu, đồng thời đảm bảo các yếu tố về bảo mật riêng tư, tính hiệu quả. Bên cạnh đó sẽ theo dõi và kiểm tra các nguồn dữ liệu được đưa từ các Database.
Triển khai machine learning cho hệ thống dữ liệu
Các mô hình học máy được thiết kế bởi các Data Engineers. Các Data Engineer chịu trách nhiệm triển khai chúng vào môi trường sản xuất. Điều này đòi hỏi phải cung cấp cho mô hình dữ liệu được lưu trữ trong kho hoặc đến trực tiếp từ các nguồn, định cấu hình thuộc tính dữ liệu, quản lý tài nguyên máy tính, thiết lập công cụ giám sát, v.v.
Data Engineer có mức lương bao nhiêu?
Lương cơ bản
Lương bổ sung
228 - 387 triệu
/nămLộ trình sự nghiệp Data Engineer
Tìm hiểu cách trở thành Data Engineer, bạn cần có những kỹ năng và trình độ học vấn nào để thành công cũng như đạt được mức lương mong đợi ở mỗi bước trên con đường sự nghiệp của bạn.
Số năm kinh nghiệm
Điều kiện và Lộ trình trở thành một Data Engineer?
Yêu cầu tuyển dụng của Data Engineer
Để thực hiện tốt các nhiệm vụ được giao, Data Engineer cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan:
Yêu cầu bằng cấp và kiến thức chuyên môn
-
Bằng cấp và chuyên ngành: Yêu cầu ứng viên đang theo học hoặc mới tốt nghiệp bằng Đại học chuyên ngành liên quan như Khoa học Dữ liệu, Khoa học Máy tính, Kỹ thuật Máy tính, Toán học, Thống kê, hoặc các ngành tương đương.
-
Kiến thức về bảo mật dữ liệu: Bảo mật dữ liệu là một yêu cầu quan trọng. Data Engineers cần hiểu về các biện pháp bảo mật và kiến thức về quyền truy cập dữ liệu.
-
Kỹ năng xử lý dữ liệu: Khả năng xử lý và biến đổi dữ liệu là quan trọng. Data Engineers cần hiểu về các công cụ và framework xử lý dữ liệu như Apache Spark, Apache Flink, hoặc Apache Kafka.
Yêu cầu về kỹ năng
-
Kỹ năng lập trình: Yêu cầu đối với Data Engineer là cần biết cơ bản về SQL, Python, Oracle. Kỹ sư dữ liệu không yêu cầu phải biết sâu về lập trình, tính toán nhưng phải nắm rõ các khái niệm và giá trị đằng sau các công thức hiển thị ở màn hình.
-
Kỹ năng phân tích logic: Kỹ năng phân tích logic luôn cần thiết trong các công việc cần sự chính xác và có tính liên kết với nhau. Data Engineer phải biết cách phân tích và tìm ra được ý nghĩa của những con số cũng như dữ liệu khô khan. Dựa vào đó, công ty có thể nhìn nhận được vấn đề để tìm ra hướng giải quyết phù hợp.
-
Kỹ năng thiết kế và trình bày báo cáo: Sau khi hoàn thành các công việc phân tích, bạn sẽ thu thập dữ liệu và lập bảng báo cáo trình bày lên cấp trên. Việc thiết kế và trình bày báo cáo phải mang tính dễ hiểu, dễ đưa ra các nhận định so sánh. Để giúp công việc trở nên thuận lợi hơn bạn có thể tự học hỏi và xem thêm các công cụ hỗ trợ thiết kế báo cáo.
Yêu cầu khác
-
Kinh nghiệm: Yêu cầu các Data Engineer đã có 1 - 2 năm kinh nghiệm. Hiểu rõ về các mô hình dữ liệu, thuật toán, kỹ thuật chuyển đổi dữ liệu. Có kinh nghiệm liên quan đến các giải pháp BI và ETL (trích xuất, chuyển đổi, tải dữ liệu) liên quan đến kho dữ liệu, các công cụ phân tích. Sử dụng được những công cụ chuyên dụng như Hadoop, Kafka,…
Lộ trình thăng tiến của Data Engineer
Lộ trình thăng tiến của Data Engineer có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.
1. Intern Data Engineer
Mức lương: 2 - 4 triệu/ tháng
Kinh nghiệm làm việc: Dưới 1 năm
Intern Data Engineer là người được đào tạo, hướng dẫn đồng thời chịu trách nhiệm hỗ trợ các công việc thực tế của một Data Engineer thực thụ để bồi dưỡng thêm kinh nghiệm, nắm rõ được trách nhiệm ngành nghề của mình. Áp dụng nguyên tắc phần mềm, công nghệ vào phát triển, bảo trì, thiết kế, kiểm tra và đánh giá các phần mềm máy tính.
>> Đánh giá: Trong lĩnh vực khoa học dữ liệu, Intern Data Engineer là một trong những vị trí được đánh giá tương đối phức tạp và đòi hỏi nhiều kỹ năng. Theo đó, vai trò của Intern Data Engineer đó là thực hiện các phân tích, đánh giá dữ liệu quan trọng cho các hoạt động của doanh nghiệp. Là công việc thu hút rất nhiều ứng viên trẻ mới ra trường bởi mức lương hấp dẫn và lộ trình phát triển rộng mở.
>> Xem thêm: Việc làm Thực tập sinh Data Engineer cho người mới
2. Data Engineer
Mức lương: 18 - 30 triệu/ tháng
Kinh nghiệm làm việcb 1 - 4 năm
Data Engineer thường làm các công việc như phân tích nguồn dữ liệu, tích hợp thông tin giữa các hệ thống nhất với nhau, chuyển đổi và đồng bộ các dữ liệu trên nhiều hệ thống riêng biệt. Các nguồn dữ liệu ở đây được biết đến như các phần mềm website trong hoạt động các lĩnh vực bán hàng, nhân sự, tài chính, kế toán,....
>> Đánh giá: Doanh nghiệp hoạt động kinh doanh hiện nay không chỉ quan tấm đến vấn đề quản lý nguồn dữ liệu mà họ còn có mong muốn tìm ra hướng giải quyết mở rộng tài nguyên để lưu trữ và kiểm soát nguồn dữ liệu. Để làm được như vậy họ cần có Data Engineer - người sẽ giúp họ thực hiện các giải pháp trên. Chính vì thế đây là ngành nghề có xu hướng tuyển dụng tăng trong các năm tiếp theo.
>> Xem thêm: Việc làm Data Engineer đang tuyển dụng
5 bước giúp Data Engineer thăng tiến nhanh trong trong công việc
Trang bị các chứng chỉ liên quan
Bạn có thể ghi danh vào những khóa học dài hạn hoặc những chứng chỉ online để vừa củng cố chuyên môn, vừa được chứng nhận có kiến thức về một lĩnh vực. Các Data Engineer tiềm năng có thể tìm hiểu việc có được các chứng chỉ chuyên môn như AWS Certified Data Analytics, Microsoft Certified: Azure Data Engineer Associate, hoặc các khóa học online uy tín cũng sẽ giúp bạn khẳng định năng lực và tăng khả năng cạnh tranh trên thị trường lao động.
Phát triển kỹ năng thống kê
Đây cũng là kiến thức cơ bản bạn cần nắm. Bạn nên bắt đầu nghiêm túc với các môn học xác suất thống kê, thống kê mô tả để nắm được các khái niệm cơ bản như nghịch lý Simpson, phân tích dữ liệu khám phá (EDA), liên kết các biến,… Đó sẽ là tiền đề vững chắc để bạn phát triển hơn trong nghề.
Có khả năng thu thập, xử lý và phân tích dữ liệu
Dữ liệu ngày nay vô cùng đa dạng và đến từ nhiều nguồn khác nhau (như bảng khảo sát, thống kê mạng xã hội, điện thoại di động,...). Từ đống dữ liệu “lộn xộn” đó bạn phải xử lý về cùng một ngôn ngữ mà máy đọc được. Vì vậy bạn cần chú trọng đến các kỹ năng này để làm việc hiệu quả, năng suất, tiết kiệm thời gian hơn.
Đầu óc tư duy nhạy bén
Với một Data Engineer cần phải tư duy hơn người bình thường. Bạn là người làm việc với dữ liệu và sử dụng bộ não để nhìn nhận từ nhiều góc độ để tìm ra giải pháp hiệu quả nhất. Do đó, nếu bạn không có cái nhìn đa chiều thì rất khó để giải quyết được vấn đề.
Hiểu rõ thuật toán Machine Learning
Đây có thể cho là kỹ năng cần thiết nhất đối với một Data Engineer. Hiểu đơn giản, Machine Learning là “dạy” máy tính học các dữ liệu lịch sử, dữ liệu có sẵn để đưa ra được các quyết định tự trị một cách thông minh. Hiểu rõ cơ chế hoạt động này sẽ giúp Data Engineer tiết kiệm được nhiều thời gian trong việc khám phá, dự báo từ dữ liệu.
Đọc thêm: