Are you a passionate Data Scientist ready to make a real impact?
If you're excited about applying analytics and ML/DL to solve complex, real-world problems, we'd love to have you on board! Here, you'll work alongside a collaborative team on dynamic projects that span multiple industries and domains - perfect for developing your expertise and contributing to game-changing solutions.
🌟 About the Role:
- Lead and participate in full-cycle data science projects - from problem definition to solution delivery.
- Build and test data hypotheses, methods, and models using cutting-edge tools and techniques.
- Collaborate with engineering teams to implement scalable, robust data pipelines and systems.
- Analyze client data to identify opportunities and create actionable, data-driven recommendations.
- Communicate findings effectively to both clients and stakeholders.
- Provide mentorship and guidance to junior data scientists, shaping the team's growth and success.
🎯 What We're Looking For:
- Fluent in English with strong communication and presentation skills.
- 5+ years of experience in NLP and/or Machine Learning (tabular data) - you know how to transform data into value.
- Proficient in Python (numpy, pandas, tensorflow/pytorch) and SQL.
- Bachelor's degree in Computer Science, Applied Mathematics, or a related field.
- Problem-solving prowess and a self-motivated drive to stay ahead of tech trends.
✨ What Gives You an Edge:
- Proven experience leading a data science team.
- Knowledge in Big Data and Cloud platforms (AWS, Google Cloud, Azure).
- Familiarity with the Agile process for fast-paced, iterative projects.
- Expertise in Solution Design and/or a specialized industry domain (insurance, logistics, etc.).
Ready to elevate your career and make an impact? Join us, and let's bring innovation to the forefront!
Due to the high volume of applications we are experiencing, our team will only be in touch with you if your application is shortlisted.
Robert Walters được thành lập tại Luân Đôn, Anh vào năm 1985 bởi Robert Walters – một doanh nhân tài ba và có nhiều kinh nghiệm trong lĩnh vực tuyển dụng và quản lý tài năng. Từ một công ty nhỏ, Robert Walters đã phát triển nhanh chóng và mở rộng mạng lưới đến hơn 30 quốc gia trên thế giớCông ty luôn không ngừng đổi mới và nỗ lực để mang lại giá trị tốt nhất cho khách hàng. Với cam kết tạo dựng mối quan hệ lâu dài và đáng tin cậy với khách hàng, Robert Walters luôn đặt giá trị cốt lõi lên hàng đầu. Công ty không chỉ tìm kiếm những ứng viên phù hợp với yêu cầu công việc, mà còn tạo điều kiện để họ phát triển bản thân và tiến xa trong sự nghiệp. Robert Walters tin rằng sự thành công của khách hàng chính là thành công của chính họ.
Review Robert Walters
Đầu tư vào con người của bạn.(GL)
Bosch là một ví dụ tuyệt vời (GL)
Làm việc tại Bosch mang lại cơ hội làm việc với người nước ngoài(GL)
Mọi người cũng đã tìm kiếm
Công việc của Data Science là gì?
Data science làm việc như một nhà phân tích, họ sử dụng khả năng và kỹ thuật của mình để phân tích và xử lý dữ liệu. Từ đó, đưa ra những cái nhìn sâu sắc, hiệu quả và khôn ngoan giúp công ty có được những quyết định đúng đắn. Nghiên cứu và phân tích những dữ liệu đã được cấu trúc lại để ra những thông tin giả thuyết và những mô hình hiệu quả. Bên cạnh đó, những vị trí như Data Engineer, Data Analyst cũng thường đảm nhận các công việc tương tự.
Mô tả công việc của vị trí Data Science
Trình bày kết quả và báo cáo
Data Science cần có khả năng trình bày kết quả và báo cáo các phân tích và mô hình hóa một cách rõ ràng và logic. Công việc này bao gồm việc viết báo cáo kỹ thuật, thuyết trình kết quả cho các đồng nghiệp và quản lý, đồng thời có thể phải giải thích các phương pháp và quyết định đã được thực hiện. Kỹ năng viết lách và trình bày là rất quan trọng để intern có thể truyền đạt thông tin một cách hiệu quả và dễ hiểu.
Phát triển các mô hình và thuật toán dữ liệu
Để áp dụng cho các tập dữ liệu, sử dụng mô hình dự đoán để tăng và tối ưu hóa trải nghiệm của khách hàng, tạo doanh thu, nhắm mục tiêu quảng cáo và các kết quả kinh doanh khác, phát triển khung thử nghiệm A/B của công ty và chất lượng mô hình thử nghiệm, phối hợp với các nhóm chức năng khác nhau để thực hiện các mô hình và giám sát kết quả.
Lọc và xử lý dữ liệu cấu trúc và phi cấu trúc
Những dữ liệu phi cấu trúc là những dữ liệu thô, những dữ liệu bị lỗi mà máy tính không đọc được. Data scientist phải xử lý, làm sạch và tổ chức lại những dữ liệu đó để xây dựng nên một bộ dữ liệu có cấu trúc và có ý nghĩa.
Dự đoán xu hướng
Sử dụng thuật toán Machine learning để dự đoán những xu hướng, cơ hội cũng như dự đoán các sự kiện có thể xảy ra hoặc đưa ra được những vấn đề mà công ty đang gặp phải. Họ còn sử nhiều công cụ khác như SQL, Weka, Python,... để triển khai và thực tiễn hóa từ đó nhận ra những mẫu dư thừa trong dữ liệu.
Data Science có mức lương bao nhiêu?
Lương cơ bản
Lương bổ sung
130 - 169 triệu
/nămLộ trình sự nghiệp Data Science
Tìm hiểu cách trở thành Data Science, bạn cần có những kỹ năng và trình độ học vấn nào để thành công cũng như đạt được mức lương mong đợi ở mỗi bước trên con đường sự nghiệp của bạn.
Số năm kinh nghiệm
Điều kiện và Lộ trình trở thành một Data Science?
Yêu cầu tuyển dụng của Data Science
Để thực hiện tốt các nhiệm vụ được giao, Data Science cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan:
Yêu cầu bằng cấp và kiến thức chuyên môn
-
Bằng cấp và chuyên ngành: Data Science thường yêu cầu ứng viên có bằng cử nhân hoặc sắp tốt nghiệp trong các ngành liên quan như Khoa học Máy tính, Khoa học Dữ liệu, Thống kê, Toán học hoặc các ngành có liên quan. Bằng cấp này không chỉ cung cấp cho ứng viên kiến thức nền tảng mà còn cho phép họ áp dụng các kiến thức này vào thực tiễn trong các dự án và nghiên cứu khoa học dữ liệu.
-
Kiến thức quản trị cơ sở dữ liệu: Nắm vững một hoặc nhiều hệ quản trị cơ sở dữ liệu (DBMS) phổ biến như MySQL, PostgreSQL, SQL Server, Oracle, MongoDB, hoặc SQLite. Nắm vững ít nhất một ngôn ngữ lập trình phù hợp cho công việc Data Science, chẳng hạn như Python hoặc Java, để tạo ứng dụng kết hợp với cơ sở dữ liệu.
-
Kiến thức công nghệ: Ứng viên cần có kiến thức vững và áp dụng được các ngôn ngữ lập trình (C/C++, Java/Javascript,...), các kiến thức nền tảng về phần mềm, hệ điều hành, cơ sở dữ liệu (database) cơ bản để trở thành nhân viên IT chuyên nghiệp.
Yêu cầu về kỹ năng
-
Có khả năng định lượng dữ liệu: Kết quả làm việc của data scientist chính là đưa ra giả thuyết, dự đoán và khám phá được xu hướng có thể xảy. Vì vậy, việc bạn có kỹ năng định lượng dữ liệu là một kỹ năng tốt giúp bạn nâng cao tay nghề.
-
Kỹ năng phân tích và đánh giá: Mỗi ngôn ngữ lập trình khác nhau sẽ đảm nhiệm từng phần khác nhau khi phát triển một ứng dụng hay phần mềm. Điều này đòi hỏi các Data Science phải có kỹ năng phân tích để nhận biết đâu là ngôn ngữ phù hợp nhất
-
Kỹ năng về phương pháp thống kê: Đây chính là một trong những kỹ năng đòi hỏi một data scientist cần phải có. Việc biết sử dụng các phương pháp thống kê giúp bạn giải quyết công việc tốt hơn và vững chãi để phát triển hơn. Các môn học như xác suất thống kê, thống kê mô tả,... sẽ cung cấp cho bạn những kiến thức về kỹ năng này.
Yêu cầu khác
-
Kinh nghiệm
Data Science cần có kiến thức và kinh nghiệm về các kỹ thuật thống kê và khai thác dữ liệu: GLM/Regression, Random Forest, Boosting, Trees, text mining, phân tích mạng xã hội, v.v. Phải có tối thiểu 1 năm kinh nghiệm, thành thạo SQL, Python, C++,... để thực hiện các công việc như nhập liệu, xử lý dữ liệu, xuất và chia sẻ dữ liệu,... Những ngôn ngữ lập trình này tuy khô khan nhưng đó chính là công cụ hỗ trợ đắc lực cho một data scientist.
Lộ trình thăng tiến của Data Science
Lộ trình thăng tiến của Data Science có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.
1. Intern Data Science
Mức lương: 4 - 8 triệu/ tháng
Kinh nghiệm làm việc: Dưới 1 năm
Intern Data Science là một vị trí thực tập trong lĩnh vực phát triển ứng dụng di động sử dụng framework React Native. Người nắm giữ vị trí này là những người mới bắt đầu hoặc đang trong giai đoạn thực tập để học hỏi và phát triển kỹ năng cần thiết để trở thành một Data Science chuyên nghiệp.
>> Đánh giá: Trong thời đại công nghệ 4.0, dữ liệu trở thành một nguồn tài nguyên vô cùng quý giá. Các tổ chức cần có những người có khả năng thu thập, phân tích dữ liệu để đưa ra những quyết định mang tính khách quan. Đó là lý do vị trí Data science ngày càng được quan tâm. Đây là một tín hiệu tích cực cho các bạn sinh viên, người mới ra trường muốn theo đuổi sự nghiệp Data science.
>> Xem thêm: Việc làm Thực tập sinh Data Science cho người mới
2. Data science
Mức lương: 14 - 33 triệu/ tháng
Kinh nghiệm làm việc: 1 - 4 năm
Data science làm việc như một nhà phân tích, họ sử dụng khả năng và kỹ thuật của mình để phân tích và xử lý dữ liệu. Từ đó, đưa ra những cái nhìn sâu sắc, hiệu quả và khôn ngoan giúp công ty có được những quyết định đúng đắn. Nghiên cứu và phân tích những dữ liệu đã được cấu trúc lại để ra những thông tin giả thuyết và những mô hình hiệu quả.
>> Đánh giá: Data Science được đánh giá là ngành có mức lương hấp dẫn hàng đầu trên thế giới, nhu cầu tuyển dụng cho vị trí trong ngành cũng rất cao. Những người giỏi thường được các công ty săn đón với mức lương cao ngất ngưởng cùng nhiều quyền lợi đi kèm.
>> Xem thêm: Việc làm Data Science dang tuyển dụng
5 bước giúp Data Science thăng tiến nhanh trong trong công việc
Nâng cao kỹ năng và kiến thức
Khoa học Dữ liệu là một lĩnh vực phát triển nhanh chóng, do đó bạn cần thường xuyên cập nhật kiến thức mới nhất về các kỹ thuật, công cụ và phần mềm Khoa học Dữ liệu. Bạn có thể tham gia các khóa học online, hội thảo, workshop, hoặc đọc sách, báo, tài liệu chuyên ngành để cập nhật kiến thức, tập trung phát triển các kỹ năng chuyên môn trong lĩnh vực Data Science mà bạn quan tâm, chẳng hạn như học máy, trí tuệ nhân tạo, xử lý ngôn ngữ tự nhiên, Big Data,..
Tích lũy kinh nghiệm
Hãy tích cực tìm kiếm cơ hội làm việc trong lĩnh vực Data Science. Bạn có thể tham khảo các trang web tuyển dụng uy tín như VietnamWorks, TopCV, Glints,..Hoặc bạn có thể liên hệ trực tiếp với các công ty quan tâm để ứng tuyển, tham gia các dự án thực tế là cách tốt nhất để bạn tích lũy kinh nghiệm và áp dụng kiến thức vào thực tế.
Có khả năng thu thập, xử lý và phân tích lượng dữ liệu khổng lồ
Khi làm việc với một lượng lớn dữ liệu từ nhiều nguồn khác nhau, đòi hỏi data scientist phải có khả năng thu thập và xử lý chúng để máy tính có thể đọc được. Do vậy, đây chính là tố chất quan trọng để giúp bạn có thể làm việc hiệu quả hơn.
Tư duy như một Data Scientist thực thụ
Khả năng tư duy là yếu tố phân biệt một người giỏi hay bình thường. Đối với một Data Scientist, bạn cần rèn luyện não mỗi ngày bằng cách luôn tò mò về nhiều vấn đề và tự tìm cho mình lời giải đáp từ nhiều góc độ khác nhau. Ngoài ra bạn cũng nên có tính tiểu tiết, ghi chép lại đầy đủ các phát hiện của mình và phải có óc sáng tạo để đưa ra giải pháp mới mẻ, hiệu quả.
Kỹ năng trình bày tốt
30% công việc của một Data Science là phải trao đổi với ban lãnh đạo, các phòng ban liên quan như Marketing, Phát triển sản phẩm,... để hiểu được vấn đề chung. Ngoài ra ở bước cuối cùng của chuỗi công việc, bạn sẽ phải trình bày các kết quả với ban lãnh đạo sao cho trực quan và dễ hiểu nhất. Chính vì thế, kỹ năng thuyết trình tốt là một điểm vô cùng quan trọng và cần được trau dồi thường xuyên.
Đọc thêm: