Review Highlights
Cập nhật 13/12/2025
Ưu điểm
Nhược điểm
1.Tham gia các dự án Đào tạo & Nâng cao năng lực Thu hồi nợ
2. Quản trị hệ thống dữ liệu & cơ sở dữ liệu đào tạo
3. Xây dựng và vận hành hệ thống báo cáo
1. Tốt nghiệp đại học trở lên chuyên ngành liên quan đến Luật, quản trị nguồn nhân lực; Kinh tế; Tài chính ngân hàng...
2. Kinh nghiệm:
3. Kỹ năng:
Quyền lợi được hưởng
- Thu nhập hấp dẫn, lương thưởng cạnh tranh theo năng lực
- Thưởng các Ngày lễ, Tết (theo chính sách ngân hàng từng thời kỳ)
- Được vay ưu đãi theo chính sách ngân hàng từng thời kỳ
- Chế độ ngày phép hấp dẫn theo cấp bậc công việc
- Bảo hiểm bắt buộc theo luật lao động + Bảo hiểm VPBank care cho CBNV tùy theo cấp bậc và thời gian công tác
- Được tham gia các khóa đào tạo tùy thuộc vào Khung đào tạo cho từng vị trí
- Thời gian làm việc: từ thứ 2 – thứ 6 & 2 sáng thứ 7/ tháng
- Môi trường làm việc năng động, thân thiện, có nhiều cơ hội học đào tạo, học hỏi và phát triển; được tham gia nhiều hoạt động văn hóa thú vị (cuộc thi về thể thao, tài năng, hoạt động teambuiding...)
Ngân hàng TMCP Việt Nam Thịnh Vượng (VPBank) được thành lập ngày 12 tháng 8 năm 1993, là một trong những ngân hàng thương mại cổ phần có lịch sử lâu đời ở Việt Nam. Sau 28 năm hoạt động, VPBank đã phát triển mạng lưới lên 233 chi nhánh/phòng giao dịch với đội ngũ gần 25.000 cán bộ nhân viên tại thời điểm ngày 30 tháng 6 năm 2021. Hết năm 2020, tổng thu nhập hoạt động của VPBank đạt 39.000 tỷ đồng. Lợi nhuận trước thuế của VPBank năm 2020 đạt mức 13.019 tỷ đồng, hoàn thành 127,5% kế hoạch và tăng 26,1% so với năm 2019, xếp thứ 4 trong các ngân hàng tại Việt Nam. Năm 2023 VPBank đạt lợi nhuận đạt 24.000 tỷ đồng.
Chính sách bảo hiểm
Các hoạt động ngoại khóa
Lịch sử thành lập
Mission
Tiên phong đổi mới, nâng tầm chất lượng dịch vụ tài chính vượt trội cho khách hàng và đối tác, phát triển hiệu quả mang lại các giá trị thịnh vượng bền vững cho cổ đông, cộng đồng và xã hội.
Cập nhật 13/12/2025
Ưu điểm
Nhược điểm
Nên trải nghiệm khi là level junior trở lên
Review Công ty VPBANK
chính sách ổn - phúc lợi ổn
Machine Learning Engineer là một chuyên gia trong lĩnh vực công nghệ và khoa học máy tính, chuyên về việc phát triển và triển khai các hệ thống thông minh và các ứng dụng sử dụng trí tuệ nhân tạo. Các kỹ sư máy học sử dụng các thuật toán và phương pháp máy học để xây dựng các mô hình dự đoán, phân loại, và tối ưu hóa dữ liệu. Họ làm việc trên nhiều lĩnh vực, từ xử lý ngôn ngữ tự nhiên cho đến thị giác máy tính và tự động hóa. Bên cạnh đó, những vị trí như Kỹ sư sửa chữa máy, Nhân viên vận hành máy cũng thường đảm nhận các công việc tương tự.
Các kỹ sư máy học phát triển các mô hình bằng nhiều thuật toán và kỹ thuật khác nhau, chẳng hạn như học có giám sát, học tập không giám sát, và học kĩ càng, để dự đoán kết quả hoặc phát hiện các mẫu trong dữ liệu. Làm việc chặt chẽ với nhà khoa học dữ liệu, kỹ sư phần mềm và các bên liên quan khác để đảm bảo tích hợp liền mạch và triển khai hiệu quả các mô hình máy học trong các ứng dụng khác nhau.
Các kỹ sư xử lý trước dữ liệu thô để làm sạch, chuẩn hóa và chuyển đổi dữ liệu thành định dạng thích hợp cho các thuật toán máy học. Họ cũng tiến hành kỹ thuật tính năng để trích xuất thông tin có ý nghĩa từ dữ liệu.
Các kỹ sư máy học đánh giá hiệu suất của các mô hình của họ bằng cách sử dụng các số liệu như độ chính xác, độ chính xác và khả năng thu hồi. Họ tối ưu hóa các mô hình bằng cách tinh chỉnh các siêu tham số, sử dụng các kỹ thuật như xác thực chéo và tìm kiếm dạng lưới.
Các kỹ sư đảm bảo rằng các mô hình có thể xử lý dữ liệu quy mô lớn và dễ dàng tích hợp vào môi trường sản xuất. Họ thường sử dụng nền tảng đám mây, công nghệ vùng chứa và API để triển khai và quản lý các mô hình.

AI (Artificial Intelligence) để chỉ các hệ thống máy tính được thiết kế để thực hiện các công việc thông minh mà trước đây chỉ con người mới có thể thực hiện được. Trong khi đó, Machine Learning là phương pháp mà các hệ thống AI có thể học và cải thiện hiệu suất của chúng thông qua xử lý dữ liệu tự động và phân tích thông tin.
Đồng nghĩa rằng Machine Learning là một phần của AI tập trung vào việc tạo ra các mô hình máy tính tự động hóa quá trình học tập và sử dụng dữ liệu để phát triển các giải pháp thông minh.
| Tiêu chí |
Trí tuệ nhân tạo |
Machine Learning |
|
Khái niệm |
AI là thuật ngữ rộng cho các ứng dụng dựa trên máy móc bắt chước trí thông minh của con người. Không phải tất cả các giải pháp AI đều là ML. |
Machine Learning là một phương pháp trí tuệ nhân tạo. Tất cả các giải pháp ML đều là các giải pháp AI. |
|
Trường hợp sử dụng phù hợp nhất |
AI là lựa chọn tốt nhất để hoàn thành một tác vụ phức tạp của con người một cách hiệu quả. |
ML là lựa chọn tốt nhất để xác định các mẫu hình trong các tập dữ liệu lớn để giải quyết các vấn đề cụ thể. |
|
Methods |
AI có thể sử dụng các phương pháp khác nhau, như dựa trên quy tắc, mạng nơ-ron, thị giác máy tính, v.v. |
Đối với ML, người ta tự chọn và trích xuất các tính năng từ dữ liệu thô và gán trọng số để đào tạo mô hình. |
|
Thực hiện |
Việc triển khai AI phụ thuộc vào tác vụ. AI thường được xây dựng sẵn và truy cập thông qua các API. |
Bạn đào tạo các mô hình ML mới hoặc hiện có cho trường hợp sử dụng cụ thể của bạn. Có sẵn các API ML được xây dựng sẵn. |
Có kiến thức chuyên môn: Hiểu biết sâu sắc về các ngôn ngữ như C++; Java; con trăn; R, Lisp, Prolog,..., có kiến thức cơ bản về phần cứng máy tính. Có bằng tốt nghiệp chuyên ngành Công nghệ thông tin, Khoa học máy tính,... là điều bắt buộc.
Có kiến thức về Machine Learning: Ứng viên nên có kiến thức cơ bản về các khái niệm, các thuật toán và phương pháp cơ bản trong Machine Learning. Điều này bao gồm hiểu biết về học máy giám sát và học máy không giám sát, cũng như khả năng đánh giá và cải tiến các mô hình Machine Learning.
Có kiến thức về toán và thống kê: Để theo đuổi lĩnh vực machine learning bạn cần có năng lực về toán học. Nhiều thuật toán máy học có trọng tâm là một đặc tính chính thức của xác suất. Bên cạnh đó, các kỹ thuật cũng bắt nguồn từ nó.
Có kiến thức về dữ liệu: Intern Machine Learning dự kiến sẽ có nhiều năng lực giống như Nhà khoa học dữ liệu, bao gồm lập mô hình dữ liệu, thành thạo kỹ thuật với các ngôn ngữ lập trình như Python và Java cũng như hiểu cách đánh giá các thuật toán, toán học và mô hình dự đoán.
Một số ngôi trường Đại học hàng đầu về đào tạo ngành Công nghệ thông tin tốt nhất Việt Nam:
Học Machine learning có thể mở ra nhiều cơ hội nghề nghiệp trong tương lai. Dưới đây là một số công việc liên quan đến Machine learning:
Machine Learning Engineer là người chịu trách nhiệm xây dựng và triển khai các mô hình machine learning. Công việc chính của họ bao gồm thu thập, tiền xử lý và phân tích dữ liệu, lựa chọn thuật toán phù hợp và xây dựng mô hình, đánh giá hiệu suất của mô hình và triển khai nó vào sản phẩm hoặc dịch vụ.
Data Scientist là người chịu trách nhiệm khai thác và phân tích dữ liệu để tìm ra thông tin hữu ích cho doanh nghiệp. Công việc của họ bao gồm thu thập, tiền xử lý và phân tích dữ liệu, áp dụng các thuật toán machine learning và deep learning để tạo ra các mô hình dự đoán, và đưa ra các khuyến nghị và quyết định dựa trên dữ liệu.
AI Researcher là người chịu trách nhiệm nghiên cứu và phát triển các thuật toán và mô hình mới trong lĩnh vực trí tuệ nhân tạo. Công việc của họ bao gồm nghiên cứu các thuật toán và mô hình hiện có, đề xuất và thử nghiệm các phương pháp mới và đưa ra các giải pháp để cải thiện hiệu suất của các thuật toán.
Giảng viên Machine Learning là người chịu trách nhiệm giảng dạy và hướng dẫn sinh viên về các kiến thức và kỹ năng liên quan đến Machine Learning. Công việc của họ bao gồm giảng dạy các khóa học về Machine Learning, hướng dẫn sinh viên trong các dự án và nghiên cứu liên quan đến Machine Learning.
Để theo đuổi lĩnh vực máy học, bạn cần phải có năng lực về toán học. Nhiều thuật toán học máy nhấn mạnh vào thuộc tính hình thức của xác suất. Đồng thời, những hiểu biết sâu sắc trong lĩnh vực thống kê sẽ cung cấp cho bạn các biện pháp, phân phối và phương pháp phân tích cần thiết để thiết lập và xác thực các mô hình từ dữ liệu được quan sát. Nhiều thuật toán học máy về cơ bản là phần mở rộng của các bước lập mô hình thống kê.
Một kỹ sư máy học giỏi luôn tò mò về những điều bí ẩn. Thay vì thất vọng về một thí nghiệm thất bại, họ luôn cố gắng tìm hiểu nguyên nhân dẫn đến tình trạng đó. Các kỹ sư máy học thường phát triển các phương pháp chung để sửa và phân cụm lỗi trong các mô hình máy học. Việc sửa các lỗi riêng lẻ tốn nhiều thời gian và khiến mô hình hoạt động khó khăn hơn được coi là lý do của phương pháp này.
Một kỹ sư máy học cần đạt được sự cân bằng giữa việc cố gắng giải quyết vấn đề và thực tế là mô hình/thử nghiệm có thể thất bại. Do đó, họ có khả năng xác định khi nào nên dừng lại.
Về bản chất, máy học là một công việc lặp đi lặp lại, vì vậy các kỹ sư cần thực sự thích thú với điều này. Một hệ thống máy học được bắt đầu với một mô hình đơn giản, sau đó được lặp đi lặp lại để liên tục cải tiến mô hình đó.
Làm việc với dữ liệu là một trong những nhiệm vụ quan trọng của kỹ sư máy học. Do đó, một kỹ sư máy học cần có sự nhạy bén và tư duy dữ liệu tốt, biết cách sàng lọc, xác định các mẫu và sử dụng hợp lý dữ liệu để đưa ra kết luận có ý nghĩa. Bên cạnh đó, khả năng trực quan hóa dữ liệu cũng rất quan trọng đối với một kỹ sư máy học. Điều này làm cho thông tin được thu thập trở nên dễ hiểu và hiệu quả.
Đọc thêm: Việc làm Intern Machine Learning tuyển dụng
Đọc thêm: Việc làm Chuyên viên quản lý vận hành đang tuyển dụng
Đọc thêm: Việc làm Thực tập sinh IT tuyển dụng
Lương cơ bản
Lương bổ sung
Tìm hiểu cách trở thành Machine learning Engineerr, bạn cần có những kỹ năng và trình độ học vấn nào để thành công cũng như đạt được mức lương mong đợi ở mỗi bước trên con đường sự nghiệp của bạn.
Để thực hiện tốt các nhiệm vụ được giao, Kỹ sư máy học cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan:
Kiến thức chuyên môn: Cử nhân về khoa học máy tính, khoa học dữ liệu hoặc một lĩnh vực liên quan. Một số vị trí có thể yêu cầu bằng thạc sĩ hoặc thậm chí bằng tiến sĩ, đặc biệt là trong các vai trò tập trung vào nghiên cứu. Có được kiến thức về các thư viện và khuôn khổ máy học, chẳng hạn như TensorFlow, PyTorch và Scikit-learning.
Kiến thức về Machine Learning: Ứng viên nên có kiến thức cơ bản về các khái niệm, các thuật toán và phương pháp trong Machine Learning. Điều này bao gồm hiểu biết về học máy giám sát và học máy không giám sát, cũng như khả năng đánh giá và cải tiến các mô hình Machine Learning.
Chứng chỉ chuyên ngành: Có các chứng chỉ nhà phát triển TensorFlow của Google, Cộng tác viên kỹ sư Azure AI của Microsoft hoặc Chuyên gia về máy học của AWS, để thể hiện kiến thức chuyên môn và cam kết của bạn đối với lĩnh vực này.
Kiến thức về dữ liệu: Kỹ sư máy học dự kiến sẽ có nhiều năng lực giống như Nhà khoa học dữ liệu, bao gồm lập mô hình dữ liệu, thành thạo kỹ thuật với các ngôn ngữ lập trình như Python và Java cũng như hiểu cách đánh giá các thuật toán, toán học và mô hình dự đoán.
Kỹ năng phân tích vấn đề tốt: Các kỹ sư máy học thường phải đối mặt với những thách thức phức tạp đòi hỏi các giải pháp sáng tạo. Một kỹ sư thành công phải có kỹ năng phân tích và giải quyết vấn đề xuất sắc để xác định các mẫu trong dữ liệu, hiểu cấu trúc cơ bản của vấn đề và phát triển các chiến lược hiệu quả để giải quyết chúng.
Giao tiếp và hợp tác hiệu quả: Các kỹ sư máy học thường làm việc trong các nhóm đa ngành, cộng tác với các nhà khoa học dữ liệu. Kỹ năng cộng tác và giao tiếp mạnh mẽ là điều cần thiết để truyền đạt hiệu quả các ý tưởng và khái niệm phức tạp cho các thành viên trong nhóm với các cấp độ chuyên môn kỹ thuật khác nhau.
Chú ý đến chi tiết và chất lượng: Việc phát triển các mô hình học máy hiệu quả đòi hỏi độ chính xác cao và chú ý đến từng chi tiết. Một kỹ sư thành công phải kỹ lưỡng trong công việc của họ, đảm bảo rằng các mô hình của họ chính xác, hiệu quả và đáng tin cậy.
Kỹ năng làm việc với data: Dữ liệu dạng số đang ngày càng trở nên phổ biến hơn trong xã hội hiện đại. Do đó, kỹ năng làm việc với dữ liệu, đặc biệt là các dữ liệu khổng lồ (big data) rất quan trọng nếu bạn muốn phát triển trong nghề Kỹ sư máy học.
Kinh nghiệm với deep learning framework
Để tự giải quyết cho mình các vấn đề bằng Machine Learning, giờ là lúc bạn cần tới sức mạnh của Framework. Bản thân các ML framework cũng như framework trong các lĩnh vực khác, bản thân nó hỗ trợ rất nhiều công cụ, thư viện để làm việc nhanh chóng, thuận tiện và an toàn hơn.
Sử dụng thông thạo công cụ trong Machine learning
Kỹ sư máy học không chỉ phải có kiến thức về cách viết mã và phát triển bằng các ngôn ngữ lập trình như Python, Java và C ++, nhiều kỹ sư học máy cũng thấy hữu ích khi sử dụng thành thạo các công cụ và tài nguyên sau: TensorFlow, Spark và Hadoop, R Programming, Apache Kafka, Amazon Machine Learning,....
Lộ trình thăng tiến của Kỹ sư máy học có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.
Mức lương: 4 - 8 triệu/ tháng
Kinh nghiệm làm việc: Dưới 1 năm
Intern Machine Learning là một công việc thực tập trong lĩnh vực Học Máy, một phần quan trọng của Trí Tuệ Nhân Tạo (AI). Người làm Intern Machine Learning thường là sinh viên hoặc người mới bắt đầu trong lĩnh vực này, họ tham gia vào các dự án để học hỏi và áp dụng các thuật toán máy học để giải quyết các vấn đề thực tế.
>> Đánh giá: Công việc của một Intern Machine Learning yêu cầu khả năng học hỏi liên tục, bởi vì lĩnh vực này luôn thay đổi nhanh chóng. Interns cần phải tự học và nghiên cứu các tiến bộ mới trong Machine Learning để cải thiện kỹ năng của họ.
Đọc thêm: Việc làm Intern Machine Learning tuyển dụng
Mức lương: 10 - 25 triệu/ tháng
Kinh nghiệm làm việc: 2 - 6 năm
Kỹ sư máy học là một chuyên gia trong lĩnh vực công nghệ và khoa học máy tính, chuyên về việc phát triển và triển khai các hệ thống thông minh và các ứng dụng sử dụng trí tuệ nhân tạo. Các kỹ sư máy học sử dụng các thuật toán và phương pháp máy học để xây dựng các mô hình dự đoán, phân loại, và tối ưu hóa dữ liệu. Họ làm việc trên nhiều lĩnh vực, từ xử lý ngôn ngữ tự nhiên cho đến thị giác máy tính và tự động hóa.
>> Đánh giá: Machine Learning là một lĩnh vực tương đối mới. Vẫn còn nhiều giải pháp, công cụ, thuật toán và ứng dụng đang chờ được tạo ra và khám phá. Tương tự như kỹ sư phần mềm, kỹ sư máy học về bản chất phải coi trọng việc học. Và điều cần thiết là sử dụng các khóa học, blog, hướng dẫn và podcast để luôn dẫn đầu trong một lĩnh vực đang thay đổi nhanh chóng.
Đọc thêm: Việc làm Kỹ sư máy học mới cập nhật
Lĩnh vực học máy không ngừng phát triển với các kỹ thuật, công cụ mới và các phương pháp hay nhất thường xuyên xuất hiện. Một kỹ sư máy học thành công phải sở hữu trí tò mò bẩm sinh và mong muốn học hỏi không ngừng. Điều này bao gồm cập nhật những nghiên cứu mới nhất, tham dự các hội nghị và hội thảo, đồng thời tham gia vào các cộng đồng trực tuyến nơi họ có thể học hỏi và cộng tác với các chuyên gia khác.
Các dự án học máy thường yêu cầu các kỹ sư thích ứng với các công nghệ, công cụ và phương pháp mới. Một kỹ sư thành công phải có khả năng thích ứng và linh hoạt, sẵn sàng học các kỹ năng mới và xoay chuyển cách tiếp cận của họ khi cần thiết. Sự linh hoạt này cho phép họ luôn dẫn đầu và duy trì sự phù hợp trong thế giới AI có nhịp độ nhanh.
Các kỹ sư máy học phải thành thạo các ngôn ngữ lập trình như Python, R hoặc Java, vì những ngôn ngữ này thường được sử dụng để phát triển các mô hình học máy. Ngoài ra, họ phải thành thạo các nguyên tắc công nghệ phần mềm, bao gồm kiểm soát phiên bản, thử nghiệm và tối ưu hóa mã. Kiến thức này cho phép họ tạo mã hiệu quả, có thể mở rộng và có thể bảo trì, có thể tích hợp liền mạch vào môi trường sản xuất.
Kết nối với các chuyên gia trong ngành bằng cách tham dự các sự kiện, tham gia cộng đồng trực tuyến và kết nối với đồng nghiệp trên các nền tảng như LinkedIn. Mạng có thể giúp bạn khám phá các cơ hội việc làm và học hỏi từ những người khác trong lĩnh vực này.
Tăng năng suất làm việc là yếu tố quan trọng giúp bạn thăng tiến trong sự nghiệp. Nếu bạn muốn lên một nhà lãnh đạo, tăng năng suất doanh nghiệp có thể giúp cải thiện kết quả kinh doanh và giúp doanh nghiệp đón đầu, dự báo những thăng trầm trong kinh doanh tốt hơn các doanh nghiệp khác. Dù bạn là ai, năng suất làm việc là vấn đề hàng đầu bạn cần quan tâm nếu muốn đạt được những mục tiêu dài hạn trong công việc và cuộc sống.
Đọc thêm: