















































































Phúc lợi
- Chế độ bảo hiểm
- Du Lịch
- Phụ cấp
- Du lịch nước ngoài
- Đồng phục
- Chế độ thưởng
- Chăm sóc sức khỏe
- Đào tạo
- Tăng lương
- Công tác phí
- Phụ cấp thâm niên
- Nghỉ phép năm
- CLB thể thao
Mô tả Công việc
- Nhóm xử lý dữ liệu Text yêu cầu kỹ năng lập trình 1 trong các ngôn ngữ Python/Scala/java với các stack công nghệ Spark processing framework, Jupiter Notebook, Numpy, Pandas, Pyspark, PyClustering, Transformer, FastBert, Anaconda, Tableau, ect.
- Có kiến thức cơ bản về Hadoop ecosystem/ ImageProcessing EcoSystem
- Kiến thức cơ bản về Machine Learning, Deep Machine Learning, Data mining.
Yêu Cầu Công Việc
- Tốt nghiệp Đại học hoặc sắp tốt nghiệp các chuyên ngành Công nghệ thông tin, Điện tử-Viễn thông, Toán Tin, Khoa học máy tính, Khoa học dữ liệu,…
- Có tối thiểu 3 năm kinh nghiệm.
- Có kiến thức tốt về thuật toán và giải thuật và kỹ năng phân tích data tốt.
- Có khả năng làm việc độc lập tốt: xác định vấn đề, giải quyết vấn đề, khả năng chịu áp lực.
- Có kỹ năng làm việc nhóm tốt: kỹ năng giao tiếp, trình bày, thuyết phục,…
- Có khả năng đọc hiểu tiếng anh tốt. Ưu tiên có thể làm việc trực tiếp với các đối tác nước ngoài.
- Ưu tiên ứng viên đã tham gia các dự án thực tế tại các công ty, hoặc có hiểu biết về lĩnh vực Ngân hàng.
- Sôi nổi, nhiệt tình, đam mê công việc.
Thông tin khác
- Bằng cấp: Đại học
- Độ tuổi: Không giới hạn tuổi
- Lương: Cạnh tranh

Ngân hàng Thương mại Cổ phần Quân đội MB Bank là ngân hàng thương mại cổ phần ở Việt Nam, là một doanh nghiệp trực thuộc Bộ Quốc phòng. MB Bank được thành lập vào ngày 04 tháng 11 năm 1994, với số vốn điều lệ ban đầu lúc mới thành lập chỉ 20 tỷ đồng cùng với 25 cán bộ nhân viên.
Trải qua gần 25 năm xây dựng và trưởng thành, MB ngày càng phát triển lớn mạnh, trở thành một tập đoàn tài chính đa năng với ngân hàng mẹ MB tại Việt Nam & nước ngoài (Lào, Campuchia) và các công ty thành viên (trong lĩnh vực chứng khoán, bảo hiểm, tài chính tiêu dùng, quản lý quỹ, quản lý tài sản, bảo hiểm nhân thọ). Với các mặt hoạt động kinh doanh hiệu quả, MB đã khẳng định được thương hiệu, uy tín trong ngành dịch vụ tài chính tại Việt Nam. MB có các hoạt động dịch vụ và sản phẩm đa dạng trên nền tảng quản trị rủi ro vượt trội, hạ tầng CNTT hiện đại, phát triển mạnh mẽ mở rộng hoạt động trên các phân khúc thị trường mới bên cạnh thị trường truyền thống của một NHTM. Sau hơn 25 năm xây dựng và trưởng thành, hiện nay MB được đánh giá là một định chế tài chính vững vàng, tin cậy, phát triển an toàn bền vững, có uy tín cao.
Chính sách bảo hiểm
- Bảo hiểm nhóm cho nhân viên MB Bank
- Bảo hiểm nhân thọ MB Ageas Life
Các hoạt động ngoại khóa
- Du lịch
- Team Building
- Thể dục thể thao
Lịch sử thành lập
- Vào ngày 04 tháng 11 năm 1994, Ngân hàng TMCP Quân Đội (MB) chính thức khai trương với 25 cán bộ nhân viên và vốn điều lệ ban đầu là 20 tỷ đồng.
- Năm 2000, MB thành lập Công ty TNHH Chứng khoán Thăng Long (nay là Công ty CP Chứng khoán Ngân hàng TMCP Quân Đội MBS) và Công ty Quản lý nợ và Khai thác tài sản Ngân hàng TMCP Quân Đội (MBAMC).
- Năm 2003, MB triển khai cải tổ toàn diện về hệ thống và nhân lực
- Năm 2004, trở thành ngân hàng đầu tiên phát hành cổ phần thông qua đấu giá ra công chúng với tổng mệnh giá là 20 tỷ đồng.
- MB tiếp tục đạt những bước phát triển quan trọng như ký kết thỏa thuận ba bên với Vietcombank và tập đoàn viễn thông quân đội Viettel về việc thanh toán cước viễn thông của Viettel, đạt thỏa thuận hợp tác với Citibank, thành lập công ty quản lý quỹ Đầu tư chứng khoán Hà Nội HFM (nay là Công ty CP Quản lý quỹ Đầu tư Ngân hàng Quân Đội MB Capital), triển khai thành công dự án hiện đại hóa công nghệ thông tin CoreT24 của tập đoàn Temenos (Thụy Sĩ).
- Năm 2008, MB tái cơ cấu tổ chức và tập đoàn viễn thông quân đội Viettel chính thức trở thành cổ đông chiến lược.
- Năm 2009, MB ra mắt Trung tâm Dịch vụ Khách hàng 247
- Nawm 2010, khai trương chi nhánh đầu tiên tại nước ngoài tại Lào
- Ngày 1/11/2011, MB thực hiện thành công việc niêm yết cổ phiếu trên sở giao dịch chứng khoán TP Hồ Chí Minh (HSX), khai trương chi nhánh thứ hai tại nước ngoài tại Campuchia trong cùng năm.
- Năm 2019, MB nâng cấp thành công hệ thống CoreT24 từ R5 lên R10 và ra mắt logo và bộ nhận diện thương hiệu mới.
- Năm 2020, MB được vinh danh là "Ngân hàng Tiêu biểu Việt Nam"
- Năm 2021, nhận giải thưởng "Nơi làm việc tốt nhất Châu Á"
Mission
Vì sự phát triển của đất nước, vì lợi ích của khách hàng
Review MB Bank
Không phù hợp để thực tập
MB giờ nhân lực trẻ nhiều nên cũng thoải mái. Giờ giấc thì hơi cứng nhắc chút
Tổng hợp các vấn đề văn hóa, chế độ, môi trường, con người
Mọi người cũng đã tìm kiếm
Công việc của Data Scientistt là gì?
1. Data Scientist là gì?
Data scientist làm việc như một nhà phân tích, họ sử dụng khả năng và kỹ thuật của mình để phân tích và xử lý dữ liệu. Từ đó, đưa ra những cái nhìn sâu sắc, hiệu quả và khôn ngoan giúp công ty có được những quyết định đúng đắn. Nghiên cứu và phân tích những dữ liệu đã được cấu trúc lại để ra những thông tin giả thuyết và những mô hình hiệu quả. Bên cạnh đó, những vị trí như Data Engineer, Data Analyst cũng thường đảm nhận các công việc tương tự.
2. Data Sciencetist cần học những gì?
Để trở thành một Data Scientist, việc trang bị kiến thức từ các ngành học cơ bản là rất quan trọng. Các ngành học này không chỉ cung cấp nền tảng lý thuyết mà còn giúp rèn luyện kỹ năng thực tiễn cần thiết cho công việc.
Khoa học máy tính
Khoa học máy tính là ngành học đầu tiên mà hầu hết các Data Scientist theo đuổi, bởi nó cung cấp các kiến thức vững chắc về lập trình, thuật toán và cấu trúc dữ liệu. Sinh viên ngành này sẽ học cách phát triển phần mềm, xây dựng các hệ thống và làm việc với các công nghệ phân tích dữ liệu. Các kỹ năng như lập trình Python, R, hoặc Java rất quan trọng trong việc triển khai các mô hình phân tích. Ngoài ra, họ cũng cần hiểu các khái niệm về mạng máy tính, hệ thống cơ sở dữ liệu và an ninh mạng.
Toán học và thống kê
Một ngành học khác không thể thiếu đối với Data Scientist là toán học và thống kê, vì nó cung cấp các công cụ và phương pháp luận để phân tích và giải thích dữ liệu. Sinh viên sẽ học về xác suất, lý thuyết thống kê, và các phương pháp phân tích dữ liệu. Kiến thức về hồi quy, phân tích dữ liệu đa biến, và phân phối xác suất là những kỹ năng cơ bản cần có. Ngoài ra, kiến thức về đại số tuyến tính và tối ưu hóa cũng rất quan trọng trong việc xây dựng các mô hình học máy phức tạp.
Khoa học dữ liệu
Ngành học khoa học dữ liệu chuyên sâu vào việc phân tích, làm sạch và xử lý dữ liệu. Các chương trình đào tạo trong ngành này giúp sinh viên hiểu cách thu thập và xử lý dữ liệu lớn (big data), sử dụng các công cụ phân tích như Hadoop, Spark. Ngoài ra, sinh viên cũng sẽ được học cách phát triển các thuật toán học máy (machine learning) và kỹ thuật học sâu (deep learning). Khoa học dữ liệu là lĩnh vực giúp chuyển từ lý thuyết sang thực tiễn, giúp các Data Scientist ứng dụng các công nghệ vào các vấn đề cụ thể trong doanh nghiệp.
Kỹ thuật phần mềm và AI
Ngành kỹ thuật phần mềm và AI tập trung vào việc xây dựng các ứng dụng, sản phẩm phần mềm và hệ thống trí tuệ nhân tạo. Sinh viên ngành này sẽ học về cách thiết kế và phát triển phần mềm, các công nghệ AI như học máy, nhận dạng hình ảnh, xử lý ngôn ngữ tự nhiên (NLP). Kiến thức về các framework như TensorFlow, PyTorch, và các công cụ AI là rất cần thiết cho Data Scientist để xây dựng các hệ thống tự động hóa và tối ưu hóa. Những kỹ năng này giúp Data Scientist triển khai và duy trì các mô hình phân tích dữ liệu trong môi trường thực tế.
Những ngành học trên đều đóng vai trò quan trọng trong việc chuẩn bị cho nghề Data Scientist. Các trường đại học uy tín như Đại học Bách Khoa Hà Nội, Đại học FPT, Đại học Khoa học Tự nhiên (Đại học Quốc gia TP.HCM), Đại học Công nghiệp Hà Nội,... cung cấp các chương trình đào tạo phù hợp với những yêu cầu của ngành khoa học dữ liệu và công nghệ thông tin. Các khóa học đào tạo về khoa học máy tính, toán học ứng dụng, và trí tuệ nhân tạo tại các trường này sẽ cung cấp cho sinh viên kiến thức nền tảng vững chắc. Ngoài ra, các khóa học trực tuyến tại Coursera, edX, hoặc Udemy cũng cung cấp các chứng chỉ về khoa học dữ liệu và học máy giúp bổ sung kiến thức và kỹ năng thực tiễn. Một số chứng chỉ nổi bật trong ngành này bao gồm:
- Chứng chỉ Data Science (Coursera, IBM): Đây là khóa học giúp học viên làm quen với các kỹ năng cơ bản trong khoa học dữ liệu, bao gồm phân tích dữ liệu, lập trình Python, và sử dụng các công cụ dữ liệu như Pandas và Matplotlib.
- Chứng chỉ Machine Learning (Stanford University, Coursera): Cung cấp kiến thức về các thuật toán học máy, từ hồi quy tuyến tính đến học sâu, do giảng viên Andrew Ng giảng dạy.
- Chứng chỉ Deep Learning (deeplearning.ai): Chứng chỉ này dạy về các mô hình học sâu, bao gồm mạng nơ-ron nhân tạo, CNN (Convolutional Neural Networks) và RNN (Recurrent Neural Networks), ứng dụng trong nhận dạng hình ảnh và ngôn ngữ.
- Chứng chỉ AI & Machine Learning (Harvard University, edX): Đây là khóa học giúp học viên hiểu rõ về trí tuệ nhân tạo và học máy, cung cấp nền tảng vững chắc về các thuật toán và ứng dụng trong AI.
3. Lương và mô tả các công việc Data Scientist
Hiện nay, có rất nhiều thông tin về việc tuyển dụng Data Scientist, trong những thông tin tuyển dụng đó đều có đính kèm theo thông tin về mức lương Data Scientist. Điều đó giúp cho các bạn có được những cơ hội để biết được mức lương của mình ra sao. Trong phần này, chúng tôi sẽ giúp các bạn có thể nắm được mức lương cơ bản của Data Sciencetist theo số năm kinh nghiệm:
Số năm kinh nghiệm | Vị trí | Mức lương |
0 - 1 năm | Intern Data Scientist | 4.500.000 - 5.000.000 triệu/tháng |
1 - 3 năm | Data Scientist | 14.500.000 - 33.600.000 triệu/tháng |
Với sự phát triển mạnh mẽ của dữ liệu trong các ngành công nghiệp, nhu cầu tuyển dụng Data Scientist ngày càng gia tăng. Vậy Data Scientist thực hiện công việc gì và yêu cầu như thế nào, hãy cùng tìm hiểu dưới đây.
Trình bày kết quả và báo cáo
Data Science cần có khả năng trình bày kết quả và báo cáo các phân tích và mô hình hóa một cách rõ ràng và logic. Công việc này bao gồm việc viết báo cáo kỹ thuật, thuyết trình kết quả cho các đồng nghiệp và quản lý, đồng thời có thể phải giải thích các phương pháp và quyết định đã được thực hiện. Kỹ năng viết lách và trình bày là rất quan trọng để intern có thể truyền đạt thông tin một cách hiệu quả và dễ hiểu.
Phát triển các mô hình và thuật toán dữ liệu
Để áp dụng cho các tập dữ liệu, sử dụng mô hình dự đoán để tăng và tối ưu hóa trải nghiệm của khách hàng, tạo doanh thu, nhắm mục tiêu quảng cáo và các kết quả kinh doanh khác, phát triển khung thử nghiệm A/B của công ty và chất lượng mô hình thử nghiệm, phối hợp với các nhóm chức năng khác nhau để thực hiện các mô hình và giám sát kết quả.
Lọc và xử lý dữ liệu cấu trúc và phi cấu trúc
Những dữ liệu phi cấu trúc là những dữ liệu thô, những dữ liệu bị lỗi mà máy tính không đọc được. Data scientist phải xử lý, làm sạch và tổ chức lại những dữ liệu đó để xây dựng nên một bộ dữ liệu có cấu trúc và có ý nghĩa.
Dự đoán xu hướng
Sử dụng thuật toán Machine learning để dự đoán những xu hướng, cơ hội cũng như dự đoán các sự kiện có thể xảy ra hoặc đưa ra được những vấn đề mà công ty đang gặp phải. Họ còn sử nhiều công cụ khác như SQL, Weka, Python,... để triển khai và thực tiễn hóa từ đó nhận ra những mẫu dư thừa trong dữ liệu.
4. So sánh Data Engineer, Data Scientist và Data Analyst (kẻ bảng - mô tả cv, mức lương..)
Dưới đây là bảng so sánh chi tiết giữa ba vị trí công việc trong lĩnh vực dữ liệu: Data Engineer, Data Scientist, và Data Analyst. Mỗi vị trí đều có những nhiệm vụ, yêu cầu kỹ năng và mức lương khác nhau, đóng vai trò quan trọng trong việc xử lý và phân tích dữ liệu, từ đó hỗ trợ doanh nghiệp ra quyết định chính xác và hiệu quả hơn.
Yếu tố | Data Engineer | Data Scientist | Data Analyst |
Mô tả công việc | Thiết kế, phát triển, và duy trì hệ thống quản lý và xử lý dữ liệu. Xây dựng cơ sở dữ liệu, pipeline dữ liệu, và đảm bảo chất lượng dữ liệu. | Phân tích và xây dựng mô hình dự đoán từ dữ liệu. Tạo ra các thuật toán và sử dụng học máy để giải quyết các bài toán phức tạp. | Thu thập, xử lý và phân tích dữ liệu để tạo ra các báo cáo và thông tin hỗ trợ quyết định kinh doanh. |
Yêu cầu kỹ năng | Thành thạo SQL, Python, Java, Hadoop, Spark. Kỹ năng về hệ thống cơ sở dữ liệu và thiết kế kiến trúc dữ liệu. | Kiến thức vững về toán học, xác suất, thống kê. Kỹ năng lập trình với Python, R. Kinh nghiệm về học máy và phân tích dữ liệu lớn. | Thành thạo SQL, Excel, các công cụ phân tích dữ liệu như Power BI, Tableau. Kiến thức về thống kê cơ bản. |
Mức lương trung bình | Từ 15 triệu đến 40 triệu VND/tháng (Tùy theo kinh nghiệm và vị trí công tác). | Từ 20 triệu đến 50 triệu VND/tháng (Cao hơn nếu có kinh nghiệm hoặc làm việc cho các công ty lớn). | Từ 10 triệu đến 30 triệu VND/tháng (Tùy thuộc vào quy mô công ty và kinh nghiệm). |
Cơ hội thăng tiến | Có thể thăng tiến lên vị trí kiến trúc sư dữ liệu hoặc quản lý kỹ thuật. | Có thể trở thành Senior Data Scientist, Lead Data Scientist, hoặc quản lý nghiên cứu dữ liệu. | Có thể thăng tiến thành Data Analytics Manager hoặc chuyên gia phân tích cấp cao. |
Khối ngành ứng dụng | Công nghệ thông tin, Fintech, E-commerce, Dữ liệu lớn (Big Data). | Khoa học dữ liệu, Machine Learning, AI, Ngành nghiên cứu. | Kinh doanh, Marketing, Tài chính, Quản lý dữ liệu. |
Từ bảng trên, có thể thấy rằng mỗi vị trí có vai trò riêng biệt trong chuỗi giá trị của dữ liệu. Data Engineer tập trung vào việc xây dựng cơ sở hạ tầng và quy trình xử lý dữ liệu, Data Scientist sử dụng kỹ thuật phân tích sâu để tìm ra thông tin có giá trị, trong khi Data Analyst thực hiện công việc phân tích dữ liệu thông thường để hỗ trợ quyết định kinh doanh
5. Những khó khăn của công việc Data Scientist
Xử lý và làm sạch dữ liệu không hoàn chỉnh
Một trong những khó khăn lớn nhất của Data Scientist là phải đối mặt với dữ liệu không hoàn chỉnh hoặc bị thiếu sót. Dữ liệu có thể bị sai lệch, không đồng nhất hoặc thiếu các giá trị quan trọng, đòi hỏi Data Scientist phải dành nhiều thời gian để làm sạch và chuẩn hóa dữ liệu trước khi có thể phân tích. Công việc này đôi khi rất tốn thời gian và yêu cầu sự tỉ mỉ, cẩn thận.
Khó khăn trong việc chọn mô hình và thuật toán phù hợp
Việc lựa chọn mô hình và thuật toán phù hợp để phân tích dữ liệu là một thách thức lớn đối với Data Scientist. Mỗi vấn đề sẽ yêu cầu các phương pháp phân tích khác nhau, và quyết định sai có thể dẫn đến kết quả không chính xác. Điều này đòi hỏi Data Scientist phải có kiến thức vững chắc và khả năng thử nghiệm, tối ưu hóa mô hình.
Cập nhật kiến thức công nghệ nhanh chóng
Lĩnh vực khoa học dữ liệu đang phát triển rất nhanh, với các công nghệ, công cụ và thuật toán mới xuất hiện liên tục. Data Scientist cần phải luôn cập nhật và làm quen với những thay đổi này để không bị tụt lại phía sau. Việc học hỏi và nâng cao kỹ năng liên tục là điều không thể thiếu trong công việc này.
Tối ưu hóa hiệu suất và giải thích kết quả cho các bộ phận khác
Dù Data Scientist có thể tạo ra các mô hình chính xác, việc giải thích các kết quả phân tích và truyền đạt thông tin cho các bộ phận khác trong công ty đôi khi gặp khó khăn. Các mô hình phức tạp có thể khó hiểu đối với những người không có chuyên môn về dữ liệu, đòi hỏi Data Scientist phải có kỹ năng giao tiếp tốt để đảm bảo rằng các quyết định kinh doanh dựa trên dữ liệu có thể được áp dụng đúng cách.
>> Khám phá thêm:
Việc làm Data Science dang tuyển dụng
Data Scientistt có mức lương bao nhiêu?
Lương cơ bản
Lương bổ sung
130 - 169 triệu
/nămLộ trình sự nghiệp Data Scientistt
Tìm hiểu cách trở thành Data Scientistt, bạn cần có những kỹ năng và trình độ học vấn nào để thành công cũng như đạt được mức lương mong đợi ở mỗi bước trên con đường sự nghiệp của bạn.
Số năm kinh nghiệm
Điều kiện và Lộ trình trở thành một Data Scientistt?
Yêu cầu tuyển dụng của Data Scientist
Để thực hiện tốt các nhiệm vụ được giao, Data Scientist cần sở hữu những kiến thức, chuyên môn vững vàng và thành thạo những kỹ năng mềm liên quan:
Yêu cầu bằng cấp và kiến thức chuyên môn
-
Bằng cấp và chuyên ngành: Data Scientist thường yêu cầu ứng viên có bằng cử nhân hoặc sắp tốt nghiệp trong các ngành liên quan như Khoa học Máy tính, Khoa học Dữ liệu, Thống kê, Toán học hoặc các ngành có liên quan. Bằng cấp này không chỉ cung cấp cho ứng viên kiến thức nền tảng mà còn cho phép họ áp dụng các kiến thức này vào thực tiễn trong các dự án và nghiên cứu khoa học dữ liệu.
-
Kiến thức quản trị cơ sở dữ liệu: Nắm vững một hoặc nhiều hệ quản trị cơ sở dữ liệu (DBMS) phổ biến như MySQL, PostgreSQL, SQL Server, Oracle, MongoDB, hoặc SQLite. Nắm vững ít nhất một ngôn ngữ lập trình phù hợp cho công việc Data Science, chẳng hạn như Python hoặc Java, để tạo ứng dụng kết hợp với cơ sở dữ liệu.
-
Kiến thức công nghệ: Ứng viên cần có kiến thức vững và áp dụng được các ngôn ngữ lập trình (C/C++, Java/Javascript,...), các kiến thức nền tảng về phần mềm, hệ điều hành, cơ sở dữ liệu (database) cơ bản để trở thành nhân viên IT chuyên nghiệp.
Yêu cầu về kỹ năng
-
Có khả năng định lượng dữ liệu: Kết quả làm việc của data scientist chính là đưa ra giả thuyết, dự đoán và khám phá được xu hướng có thể xảy. Vì vậy, việc bạn có kỹ năng định lượng dữ liệu là một kỹ năng tốt giúp bạn nâng cao tay nghề.
-
Kỹ năng phân tích và đánh giá: Mỗi ngôn ngữ lập trình khác nhau sẽ đảm nhiệm từng phần khác nhau khi phát triển một ứng dụng hay phần mềm. Điều này đòi hỏi các Data Science phải có kỹ năng phân tích để nhận biết đâu là ngôn ngữ phù hợp nhất
-
Kỹ năng về phương pháp thống kê: Đây chính là một trong những kỹ năng đòi hỏi một data scientist cần phải có. Việc biết sử dụng các phương pháp thống kê giúp bạn giải quyết công việc tốt hơn và vững chãi để phát triển hơn. Các môn học như xác suất thống kê, thống kê mô tả,... sẽ cung cấp cho bạn những kiến thức về kỹ năng này.
Yêu cầu khác
-
Kinh nghiệm
Data Science cần có kiến thức và kinh nghiệm về các kỹ thuật thống kê và khai thác dữ liệu: GLM/Regression, Random Forest, Boosting, Trees, text mining, phân tích mạng xã hội, v.v. Phải có tối thiểu 1 năm kinh nghiệm, thành thạo SQL, Python, C++,... để thực hiện các công việc như nhập liệu, xử lý dữ liệu, xuất và chia sẻ dữ liệu,... Những ngôn ngữ lập trình này tuy khô khan nhưng đó chính là công cụ hỗ trợ đắc lực cho một data scientist.
Lộ trình thăng tiến của Data Scientist
Lộ trình thăng tiến của Data Science có thể khá đa dạng và phụ thuộc vào tổ chức và ngành nghề cụ thể. Dưới đây là một lộ trình thăng tiến phổ biến cho vị trí này.
1. Intern Data Scientist
Mức lương: 4 - 8 triệu/ tháng
Kinh nghiệm làm việc: Dưới 1 năm
Intern Data Science là một vị trí thực tập trong lĩnh vực phát triển ứng dụng di động sử dụng framework React Native. Người nắm giữ vị trí này là những người mới bắt đầu hoặc đang trong giai đoạn thực tập để học hỏi và phát triển kỹ năng cần thiết để trở thành một Data Science chuyên nghiệp.
>> Đánh giá: Trong thời đại công nghệ 4.0, dữ liệu trở thành một nguồn tài nguyên vô cùng quý giá. Các tổ chức cần có những người có khả năng thu thập, phân tích dữ liệu để đưa ra những quyết định mang tính khách quan. Đó là lý do vị trí Data science ngày càng được quan tâm. Đây là một tín hiệu tích cực cho các bạn sinh viên, người mới ra trường muốn theo đuổi sự nghiệp Data science.
>> Xem thêm: Việc làm Thực tập sinh Data Science cho người mới
2. Data scientist
Mức lương: 14 - 33 triệu/ tháng
Kinh nghiệm làm việc: 1 - 4 năm
Data science làm việc như một nhà phân tích, họ sử dụng khả năng và kỹ thuật của mình để phân tích và xử lý dữ liệu. Từ đó, đưa ra những cái nhìn sâu sắc, hiệu quả và khôn ngoan giúp công ty có được những quyết định đúng đắn. Nghiên cứu và phân tích những dữ liệu đã được cấu trúc lại để ra những thông tin giả thuyết và những mô hình hiệu quả.
>> Đánh giá: Data Science được đánh giá là ngành có mức lương hấp dẫn hàng đầu trên thế giới, nhu cầu tuyển dụng cho vị trí trong ngành cũng rất cao. Những người giỏi thường được các công ty săn đón với mức lương cao ngất ngưởng cùng nhiều quyền lợi đi kèm.
>> Xem thêm: Việc làm Data Science dang tuyển dụng
5 bước giúp Data Scientist thăng tiến nhanh trong trong công việc
Nâng cao kỹ năng và kiến thức
Khoa học Dữ liệu là một lĩnh vực phát triển nhanh chóng, do đó bạn cần thường xuyên cập nhật kiến thức mới nhất về các kỹ thuật, công cụ và phần mềm Khoa học Dữ liệu. Bạn có thể tham gia các khóa học online, hội thảo, workshop, hoặc đọc sách, báo, tài liệu chuyên ngành để cập nhật kiến thức, tập trung phát triển các kỹ năng chuyên môn trong lĩnh vực Data Science mà bạn quan tâm, chẳng hạn như học máy, trí tuệ nhân tạo, xử lý ngôn ngữ tự nhiên, Big Data,..
Tích lũy kinh nghiệm
Hãy tích cực tìm kiếm cơ hội làm việc trong lĩnh vực Data Science. Bạn có thể tham khảo các trang web tuyển dụng uy tín như VietnamWorks, TopCV, Glints,..Hoặc bạn có thể liên hệ trực tiếp với các công ty quan tâm để ứng tuyển, tham gia các dự án thực tế là cách tốt nhất để bạn tích lũy kinh nghiệm và áp dụng kiến thức vào thực tế.
Có khả năng thu thập, xử lý và phân tích lượng dữ liệu khổng lồ
Khi làm việc với một lượng lớn dữ liệu từ nhiều nguồn khác nhau, đòi hỏi data scientist phải có khả năng thu thập và xử lý chúng để máy tính có thể đọc được. Do vậy, đây chính là tố chất quan trọng để giúp bạn có thể làm việc hiệu quả hơn.
Tư duy như một Data Scientist thực thụ
Khả năng tư duy là yếu tố phân biệt một người giỏi hay bình thường. Đối với một Data Scientist, bạn cần rèn luyện não mỗi ngày bằng cách luôn tò mò về nhiều vấn đề và tự tìm cho mình lời giải đáp từ nhiều góc độ khác nhau. Ngoài ra bạn cũng nên có tính tiểu tiết, ghi chép lại đầy đủ các phát hiện của mình và phải có óc sáng tạo để đưa ra giải pháp mới mẻ, hiệu quả.
Kỹ năng trình bày tốt
30% công việc của một Data Science là phải trao đổi với ban lãnh đạo, các phòng ban liên quan như Marketing, Phát triển sản phẩm,... để hiểu được vấn đề chung. Ngoài ra ở bước cuối cùng của chuỗi công việc, bạn sẽ phải trình bày các kết quả với ban lãnh đạo sao cho trực quan và dễ hiểu nhất. Chính vì thế, kỹ năng thuyết trình tốt là một điểm vô cùng quan trọng và cần được trau dồi thường xuyên.
Đọc thêm: